Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 9;53(9):5334-43.
doi: 10.1167/iovs.12-8303.

Development of retinal pigment epithelium from human parthenogenetic embryonic stem cells and microRNA signature

Affiliations

Development of retinal pigment epithelium from human parthenogenetic embryonic stem cells and microRNA signature

Wen-Bo Li et al. Invest Ophthalmol Vis Sci. .

Abstract

Purpose: We investigated the potential of human parthenogenetic embryonic stem cells (hPESCs) to differentiate into RPE cells, and identified development-regulating microRNAs (miRNAs).

Methods: RPE cells were derived from hPESCs. The expression of markers and miRNA expression profiles during differentiation were studied by immunocytochemistry, real-time RT-PCR, and miRNA expression array at three time points. Human fetal RPE (hfRPE) cells also were analyzed. The target genes of candidate miRNAs then were validated.

Results: hPESC-derived RPE cells exhibited similar morphology and pigmentation to hfRPE cells. The expression of markers during differentiation indicated that the hPESC-derived RPE cells were immature. Most specific miRNAs had a role at some time point during the differentiation and maturation of RPE from hPESCs, except for two miRNAs (miR-204 and the miR-302 family). The miR-204 was upregulated and miR-302 was down-regulated throughout the process. Subsequently, pigmented clusters and RPE signature gene expression increased significantly in the miR-204 overexpression group and miR-302 inhibition group compared to the control groups. CTNNBIP1 and TGFBR2 were confirmed to be the target genes of miR-204 and miR-302, respectively.

Conclusions: hPESCs can develop into RPE-like cells and, thus, can be additional promising sources of RPE cells in cell therapy. The miR-204, miR-302s, and their targets are involved in regulating directed differentiation during the full course, thereby contributing to the search for a new method of improving differentiation efficiency using miRNAs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources