Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family
- PMID: 22737079
- PMCID: PMC3380853
- DOI: 10.1371/journal.pgen.1002729
Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family
Abstract
Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.
Conflict of interest statement
HSM is a Section Editor of PLoS Genetics.
Figures





Comment in
-
A rapidly evolving genomic toolkit for Drosophila heterochromatin.Fly (Austin). 2013 Jul-Sep;7(3):137-41. doi: 10.4161/fly.24335. Epub 2013 Mar 21. Fly (Austin). 2013. PMID: 23519206 Free PMC article.
Similar articles
-
A rapidly evolving genomic toolkit for Drosophila heterochromatin.Fly (Austin). 2013 Jul-Sep;7(3):137-41. doi: 10.4161/fly.24335. Epub 2013 Mar 21. Fly (Austin). 2013. PMID: 23519206 Free PMC article.
-
Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera.Mol Biol Evol. 2018 Oct 1;35(10):2375-2389. doi: 10.1093/molbev/msy128. Mol Biol Evol. 2018. PMID: 29924345 Free PMC article.
-
An unusually simple HP1 gene set in Hymenopteran insects.Biochem Cell Biol. 2015 Dec;93(6):596-603. doi: 10.1139/bcb-2015-0046. Epub 2015 Aug 31. Biochem Cell Biol. 2015. PMID: 26419616
-
Multiple roles for heterochromatin protein 1 genes in Drosophila.Annu Rev Genet. 2009;43:467-92. doi: 10.1146/annurev-genet-102108-134802. Annu Rev Genet. 2009. PMID: 19919324 Review.
-
Does heterochromatin protein 1 always follow code?Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4(Suppl 4):16462-9. doi: 10.1073/pnas.162371699. Epub 2002 Jul 31. Proc Natl Acad Sci U S A. 2002. PMID: 12151603 Free PMC article. Review.
Cited by
-
A rapidly evolving genomic toolkit for Drosophila heterochromatin.Fly (Austin). 2013 Jul-Sep;7(3):137-41. doi: 10.4161/fly.24335. Epub 2013 Mar 21. Fly (Austin). 2013. PMID: 23519206 Free PMC article.
-
Establishment and evolution of heterochromatin.Ann N Y Acad Sci. 2020 Sep;1476(1):59-77. doi: 10.1111/nyas.14303. Epub 2020 Feb 4. Ann N Y Acad Sci. 2020. PMID: 32017156 Free PMC article. Review.
-
HP1 proteins compact DNA into mechanically and positionally stable phase separated domains.Elife. 2021 Mar 4;10:e64563. doi: 10.7554/eLife.64563. Elife. 2021. PMID: 33661100 Free PMC article.
-
Recurrent but Short-Lived Duplications of Centromeric Proteins in Holocentric Caenorhabditis Species.Mol Biol Evol. 2022 Oct 7;39(10):msac206. doi: 10.1093/molbev/msac206. Mol Biol Evol. 2022. PMID: 36173809 Free PMC article.
-
The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization.Insects. 2021 Sep 29;12(10):884. doi: 10.3390/insects12100884. Insects. 2021. PMID: 34680653 Free PMC article. Review.
References
-
- Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 2003;423:241–254. - PubMed
-
- Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature. 2007;450:203–218. - PubMed
-
- Moritz KB, Roth GE. Complexity of germline and somatic DNA in Ascaris. Nature. 1976;259:55–57. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials