Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun 25:3:218.
doi: 10.3389/fphys.2012.00218. eCollection 2012.

Differential modulation of nitric oxide synthases in aging: therapeutic opportunities

Affiliations

Differential modulation of nitric oxide synthases in aging: therapeutic opportunities

Stefany B A Cau et al. Front Physiol. .

Abstract

Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO) bioavailability and altered vascular expression and activity of NO synthase (NOS) enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS)-derived NO, while increased inducible NOS (iNOS) expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS) also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen), statins, resveratrol, and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.

Keywords: aging; endothelial dysfunction; folic acid; nitric oxide; nitric oxide synthases; resveratrol; statin; uncoupled eNOS.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Role of nitric oxide synthase (NOS) enzymes in endothelial function and aging-associated endothelial dysfunction. Endothelial (e)-NOS isoform converts l-arginine to nitric oxide (NO). eNOS activity is determined by intracellular calcium concentration [i(Ca2+)] and/or its phosphorylation (P) state at different sites (e.g., eNOS is positively and negatively modulated by phosphorylation of serine 1177 (S1177) and threonine 494 (T494), respectively). In addition, eNOS activity is inhibited by its interaction with caveolin-1 and by O-GlcNAc modification, while eNOS association with heat shock protein 90 (hsp90) favors its activation. In endothelial aging, NO synthesis is compromised because eNOS activity is decreased due to increased expression and interaction with caveolin, reduced expression and association with hsp90, reduced phosphorylation of S1177 and increased phosphorylation of T494. In addition, reduced availability of l-arginine and tetrahydrobiopterin (BH4) induces eNOS uncoupling or changes the enzyme to a state that favors superoxide anion O2 generation. In aged endothelial cells, up-regulated iNOS, which may be associated with NF-κB-induced vascular inflammation, produces high levels of NO. NO reacts with cysteine residues of proteins (arginase in this example), forming S-nitrosothiol (-SNO)–arginase, which increases arginase activity and l-arginine consumption. NO directly reacts with O2 produced by uncoupled eNOS, and other vascular sources, generating the harmful reactive nitrogen specie peroxynitrite (ONOO), which contributes to vascular dysfunction. The aging–associated NOS alterations are depicted in red. ACh, acetylcholine; Bk, bradykinin; PI3K, phosphoinositide-3-kinase.
Figure 2
Figure 2
Drugs that affect NO generation/turnover by modulating NOS enzymes. The drugs that modulate NOS enzymes and, consequently NO production, act by changing three important aspects of NOS enzymes function: activity, expression and transcription: (1) activity; estrogen induces eNOS phosphorylation at (S1177) to increase enzyme activity; statins and folic acid may cause eNOS recoupling to increase eNOS activity and NO production; (2) expression; statins and DHEA increase eNOS expression and, consequently, NO generation; (3) transcription; statins and resveratrol act at the transcriptional level of eNOS increasing its mRNA stability. In addition, resveratrol activates the promoter gene of eNOS increasing its transcription. Whereas eNOS enzyme function can be altered in three different ways, nNOS and iNOS function can be modulated at the transcriptional level by some of these drugs. Statins may directly induce nNOS transcription and increase nNOS protein levels. On the other hand, resveratrol indirectly decreases iNOS transcription by inhibiting NF-κB. DHEA, dehydroepiandrosterone; ROS, reactive oxygen species; NF-κB, nuclear factor kappa B; mRNA, messenger RNA.

References

    1. Alp N. J., Mussa S., Khoo J., Cai S., Guzik T., Jefferson A., Goh N., Rockett K. A., Channon K. M. (2003). Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J. Clin. Invest. 112, 725–73510.1172/JCI17786 - DOI - PMC - PubMed
    1. Antoniades C., Bakogiannis C., Leeson P., Guzik T. J., Zhang M. H., Tousoulis D., Antonopoulos A. S., Demosthenous M., Marinou K., Hale A., Paschalis A., Psarros C., Triantafyllou C., Bendall J., Casadei B., Stefanadis C., Channon K. M. (2011). Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation 124, 335–34510.1161/CIRCULATIONAHA.111.029272 - DOI - PMC - PubMed
    1. Antoniades C., Shirodaria C., Warrick N., Cai S., de Bono J., Lee J., Leeson P., Neubauer S., Ratnatunga C., Pillai R., Refsum H., Channon K. M. (2006). 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 114, 1193–120110.1161/CIRCULATIONAHA.106.612325 - DOI - PubMed
    1. Aoki C., Nakano A., Tanaka S., Yanagi K., Ohta S., Jojima T., Kasai K., Takekawa H., Hirata K., Hattori Y. (2012). Fluvastatin upregulates endothelial nitric oxide synthase activity via enhancement of its phosphorylation and expression and via an increase in tetrahydrobiopterin in vascular endothelial cells. Int. J. Cardiol. 156, 55–6110.1016/j.ijcard.2010.10.029 - DOI - PubMed
    1. Baigent C., Keech A., Kearney P. M., Blackwell L., Buck G., Pollicino C., Kirby A., Sourjina T., Peto R., Collins R., Simes R. (2005). Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–127810.1016/S0140-6736(05)67394-1 - DOI - PubMed

LinkOut - more resources