Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep 27;1(1):2.
doi: 10.1186/2045-5380-1-2.

Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity

Affiliations

Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity

Patrick M Fisher et al. Biol Mood Anxiety Disord. .

Abstract

Background: The amygdala and medial prefrontal cortex (mPFC) comprise a key corticolimbic circuit that helps shape individual differences in sensitivity to threat and the related risk for psychopathology. Although serotonin (5-HT) is known to be a key modulator of this circuit, the specific receptors mediating this modulation are unclear. The colocalization of 5-HT1A and 5-HT2A receptors on mPFC glutamatergic neurons suggests that their functional interactions may mediate 5-HT effects on this circuit through top-down regulation of amygdala reactivity. Using a multimodal neuroimaging strategy in 39 healthy volunteers, we determined whether threat-related amygdala reactivity, assessed with blood oxygen level-dependent functional magnetic resonance imaging, was significantly predicted by the interaction between mPFC 5-HT1A and 5-HT2A receptor levels, assessed by positron emission tomography.

Results: 5-HT1A binding in the mPFC significantly moderated an inverse correlation between mPFC 5-HT2A binding and threat-related amygdala reactivity. Specifically, mPFC 5-HT2A binding was significantly inversely correlated with amygdala reactivity only when mPFC 5-HT1A binding was relatively low.

Conclusions: Our findings provide evidence that 5-HT1A and 5-HT2A receptors interact to shape serotonergic modulation of a functional circuit between the amygdala and mPFC. The effect of the interaction between mPFC 5-HT1A and 5-HT2A binding and amygdala reactivity is consistent with the colocalization of these receptors on glutamatergic neurons in the mPFC.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Amygdala reactivity to perceptual processing of fearful and angry facial expressions. Statistical parametric map representing bilateral amygdala clusters exhibiting a significant response to task (faces > shapes; right amygdala: (24, -6, -11), z = 6.28, k = 145 voxels (P < 0.05, corrected); left amygdala: (-18, -7, -15), z = 5.77, k = 146 voxels (P < 0.05, corrected). Color bar indicates t-scores.
Figure 2
Figure 2
Association between amygdala reactivity and 5-HT1A BPND and 5-HT2A BPND. (A,B) Plot of non-significant correlation between left and right amygdala reactivity and pgPFC 5-HT1A BPND. (C) Plot of non-significant correlation between left amygdala reactivity and pgPFC 5-HT2A BPND. (D) Plot of significant inverse correlation between right amygdala reactivity and pgPFC 5-HT2A BPND. 5-HT = serotonin; BPND = binding potential, non-displaceable; pgPFC = pregenual prefrontal cortex; sgPFC = subgenual prefrontal cortex.
Figure 3
Figure 3
5-HT1A BPND significantly moderated the correlation between 5-HT2A BPND and right amygdala reactivity. (A) pgPFC 5-HT1A BPND moderated the correlation between pgPFC 5-HT2A BPND and right amygdala reactivity. Lines indicate simple slope between pgPFC 5-HT2A BPND and right amygdala reactivity at three arbitrarily chosen pgPFC 5-HT1A BPND values: low (1 SD below mean (-1 SD), solid black line), mean (equivalent to mean, red dotted line) and high (1 SD above mean (+1 SD), green dotted line). (B) sgPFC 5-HT1A BPND significantly moderated the association between sgPFC 5-HT2A BPND and right amygdala reactivity. Lines indicate simple slope between sgPFC 5-HT2A BPND and right amygdala reactivity at three arbitrarily chosen sgPFC 5-HT1A BPND values: low (-1 SD, solid black line), mean (red dotted line) and high (+1 SD, green dotted line). *Indicates simple slope, P < 0.05; 5-HT = serotonin; a.u. = arbitrary units; BPND = binding potential, non-displaceable; pgPFC = pregenual prefrontal cortex; sgPFC = subgenual prefrontal cortex.
Figure 4
Figure 4
Schematic illustrating mPFC projection neurons that act to regulate amygdala response to threat-related stimuli. 5-HT1A and 5-HT2A in mPFC are positioned to modulate this circuitry by biasing excitability of these mPFC neurons, thereby affecting the capacity to regulate amygdala reactivity. 5-HT = serotonin; mPFC = medial prefrontal cortex; CeL = lateral central nucleus of the amygdala; CeM = medial central nucleus of the amygdala; ITC = intercalated cells.
Figure 5
Figure 5
Sagittal image of single-subject magnetic resonance image with pgPFC (top) and sgPFC (bottom) ROIs outlined. Despite its appearance, pgPFC and sgPFC ROIs are drawn on consecutive transaxial slices. pgPFC = pregenual prefrontal cortex; ROIs = regions of interest; sgPFC = subgenual prefrontal cortex.

Similar articles

Cited by

References

    1. Hariri AR, Drabant EM, Weinberger DR. Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry. 2006;59(10):888. doi: 10.1016/j.biopsych.2005.11.005. - DOI - PubMed
    1. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci. 2005;8(6):828–34. doi: 10.1038/nn1463. - DOI - PubMed
    1. Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction Learning in Humans: Role of the Amygdala and vmPFC. Neuron. 2004;43(6):897. doi: 10.1016/j.neuron.2004.08.042. - DOI - PubMed
    1. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72. doi: 10.1038/sj.npp.1301555. - DOI - PMC - PubMed
    1. Likhtik E, Pelletier JG, Paz R, Pare D. Prefrontal control of the amygdala. J Neurosci. 2005;25(32):7429–37. doi: 10.1523/JNEUROSCI.2314-05.2005. - DOI - PMC - PubMed

LinkOut - more resources