Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun 29;46(6):884-92.
doi: 10.1016/j.molcel.2012.05.037.

Tissue-specific alternative splicing remodels protein-protein interaction networks

Affiliations
Free article

Tissue-specific alternative splicing remodels protein-protein interaction networks

Jonathan D Ellis et al. Mol Cell. .
Free article

Abstract

Alternative splicing plays a key role in the expansion of proteomic and regulatory complexity, yet the functions of the vast majority of differentially spliced exons are not known. In this study, we observe that brain and other tissue-regulated exons are significantly enriched in flexible regions of proteins that likely form conserved interaction surfaces. These proteins participate in significantly more interactions in protein-protein interaction (PPI) networks than other proteins. Using LUMIER, an automated PPI assay, we observe that approximately one-third of analyzed neural-regulated exons affect PPIs. Inclusion of these exons stimulated and repressed different partner interactions at comparable frequencies. This assay further revealed functions of individual exons, including a role for a neural-specific exon in promoting an interaction between Bridging Integrator 1 (Bin1)/Amphiphysin II and Dynamin 2 (Dnm2) that facilitates endocytosis. Collectively, our results provide evidence that regulated alternative exons frequently remodel interactions to establish tissue-dependent PPI networks.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources