Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul;122(7):2331-6.
doi: 10.1172/JCI60229. Epub 2012 Jul 2.

New insights into the mechanisms of venous thrombosis

Affiliations

New insights into the mechanisms of venous thrombosis

Nigel Mackman. J Clin Invest. 2012 Jul.

Erratum in

  • J Clin Invest. 2012 Sep 4;122(9):3368

Abstract

Venous thrombosis is a leading cause of morbidity and mortality in industrialized countries, especially in the elderly. Many risk factors have been identified for venous thrombosis that alter blood flow, activate the endothelium, and increase blood coagulation. However, the precise mechanisms that trigger clotting in large veins have not been fully elucidated. The most common site for initiation of the thrombus appears to be the valve pocket sinus, due to its tendency to become hypoxic. Activation of endothelial cells by hypoxia or possibly inflammatory stimuli would lead to surface expression of adhesion receptors that facilitate the binding of circulating leukocytes and microvesicles. Subsequent activation of the leukocytes induces expression of the potent procoagulant protein tissue factor that triggers thrombosis. Understanding the mechanisms of venous thrombosis may lead to the development of new treatments.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Activation of the coagulation cascade.
The coagulation cascade can be divided into the extrinsic (TF, FVIIa), intrinsic (FXIIa, FXIa, FIXa), and common (FXa and thrombin) pathways. The FIXa and FXa cofactors (FVIIIa and FVa, respectively) are not shown. Pathological activation of the extrinsic pathway is via TF expression in activated monocytes, monocyte-derived MVs, and possibly activated endothelial cells. Cellular RNA and polyphosphate (PolyP) released from activated platelets or bacteria activate FXIIa in the intrinsic pathway. The two new FDA-approved anticoagulant drugs rivaroxaban and dabigatran inhibit FXa and thrombin, respectively.
Figure 2
Figure 2. Proposed mechanisms for venous thrombosis.
My group proposed that formation of a venous thrombosis can be divided into distinct steps. First, the endothelium is activated by hypoxia and/or inflammatory mediators and expresses the adhesion proteins P-selectin, E-selectin, and vWF. Second, circulating leukocytes, platelets, and TF+ MVs bind to the activated endothelium. Third, the bound leukocytes become activated and express TF. The local activation of the coagulation cascade overwhelms the protective anticoagulant pathways and triggers thrombosis. The fibrin-rich clot also contains platelets and red blood cells.

Similar articles

Cited by

References

    1. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451(7181):914–918. doi: 10.1038/nature06797. - DOI - PMC - PubMed
    1. Goldhaber SZ. Haemostasis and Thrombosis. 1994. Epidemiology of pulmonary embolism and deep vein thrombosis. In: Bloom AL, et al., eds. pp. 1327–1333. 3rd ed. Edinburgh, United Kingdom: Churchill Livingstone;
    1. Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ., 3rd Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998;158(6):585–593. doi: 10.1001/archinte.158.6.585. - DOI - PubMed
    1. Kyrle PA, Eichinger S. Deep vein thrombosis. Lancet. 2005;365(9465):1163–1174. doi: 10.1016/S0140-6736(05)71880-8. - DOI - PubMed
    1. Oger E. Incidence of venous thromboembolism: a community-based study in Western France. EPI-GETBP Study Group. Groupe d’Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost. 2000;83(5):657–660. - PubMed

Publication types

MeSH terms

Substances