High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries
- PMID: 22751203
- PMCID: PMC3518396
- DOI: 10.1038/nmeth.2078
High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries
Abstract
We introduce two large-scale resources for functional analysis of microRNA (miRNA): a decoy library for inhibiting miRNA function and a sensor library for monitoring microRNA activity. To take advantage of the sensor library, we developed a high-throughput assay called Sensor-seq to simultaneously quantify the activity of hundreds of miRNAs. Using this approach, we show that only the most abundant miRNAs in a cell mediate target suppression. Over 60% of detected miRNAs had no discernible activity, which indicated that the functional 'miRNome' of a cell is considerably smaller than currently inferred from profiling studies. Moreover, some highly expressed miRNAs exhibited relatively weak activity, which in some cases correlated with a high target-to-miRNA ratio or increased nuclear localization of the miRNA. Finally, we show that the miRNA decoy library can be used for pooled loss-of-function studies. These tools are valuable resources for studying miRNA biology and for miRNA-based therapeutics.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
References
-
- He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–531. - PubMed
-
- Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet. 2009;10:578–585. - PubMed
-
- Mansfield JH, et al. MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet. 2004;36:1079–1083. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
