Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov;27(6):520-8.
doi: 10.1177/0267659112452316. Epub 2012 Jun 29.

Intimal hyperplasia: slow but deadly

Affiliations
Review

Intimal hyperplasia: slow but deadly

B Mills et al. Perfusion. 2012 Nov.

Abstract

Intimal hyperplasia is the leading cause of long-term failure in coronary artery bypass vein grafting, coronary artery stenting, angioplasty, arteriovenous fistula for dialysis, and allograft transplantation. Intimal hyperplasia is a product of vascular smooth muscle cell proliferation, migration through the internal elastic lamina, and deposition of extracellular matrix proteins driven by growth factors in the vasculature. This vascular pathology results in a progressive diminution of the vessel lumen and serves as a site for thrombosis and atherosclerotic lesions. A key cell type in the initiation of intimal hyperplasia is the vascular endothelial cell, which appears to have down-stream effects on the vascular smooth muscle proliferation and migration. Currently, the only means available for prevention of intimal hyperplasia is through inhibition of mammalian target of rapamycin (mTOR) with the immunosuppressant rapamycin. mTOR integrates up-stream signals from growth factors such as IL-2 and senses the cellular nutrient and energy levels and redox status. This presentation will discuss the potential means of preserving the vascular endothelial cell and, thereby, reducing the development of intimal hyperplasia in our open-heart surgical patients.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources