Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul;68(Pt 7):784-93.
doi: 10.1107/S0907444912011912. Epub 2012 Jun 15.

Structures of Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors

Affiliations
Free article

Structures of Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors

Sang Jae Lee et al. Acta Crystallogr D Biol Crystallogr. 2012 Jul.
Free article

Abstract

Peptide deformylase (PDF) catalyzes the removal of the formyl group from the N-terminal methionine residue in newly synthesized polypeptides, which is an essential process in bacteria. Four new inhibitors of PDF that belong to two different classes, hydroxamate/pseudopeptide compounds [PMT387 (7a) and PMT497] and reverse-hydroxamate/nonpeptide compounds [PMT1039 (15e) and PMT1067], have been developed. These compounds inhibited the growth of several pathogens involved in respiratory-tract infections, such as Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae, and leading nosocomial pathogens such as Staphylococcus aureus and Klebsiella pneumoniae with a minimum inhibitory concentration (MIC) in the range 0.1-0.8 mg ml(-1). Interestingly, the reverse-hydroxamate/nonpeptide compounds showed a 250-fold higher antimicrobial activity towards S. aureus, although the four compounds showed similar K(i) values against S. aureus PDF enzymes, with K(i) values in the 11-85 nM range. To provide a structural basis for the discovery of additional PDF inhibitors, the crystal structures of S. aureus PDF in complex with the four inhibitors were determined at resolutions of 1.90-2.30 Å. The inhibitor-bound structures displayed distinct deviations depending on the inhibitor class. The distance between the Zn(2+) ion and the carbonyl O atom of the hydroxamate inhibitors (or the hydroxyl O atom of the reverse-hydroxamate inhibitors) appears to be correlated to S. aureus inhibition activity. The structural information reported in this study should aid in the discovery of new PDF inhibitors that can be used as novel antibacterial drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms