Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;6(3):65-72.
doi: 10.1049/iet-syb.2011.0075.

Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson's disease

Affiliations
Free article

Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson's disease

M Cloutier et al. IET Syst Biol. 2012 Jun.
Free article

Abstract

Research into Parkinson's disease (PD) is difficult and time consuming. It is a complex condition that develops over many decades in the human brain. For such apparently intractable diseases, mathematical models can offer an additional means of investigation. As a contribution to this process, the authors have developed an ordinary differential equation model of the most important cellular processes that have been associated with PD. The model describes the following processes: (i) cellular generation and scavenging of reactive oxygen species; (ii) the possible damage and removal of the protein -synuclein and, (iii) feedback interactions between damaged α-synuclein and reactive oxygen species. Simulation results show that the Parkinsonian condition, with elevated oxidative stress and misfolded α-synuclein accumulation, can be induced in the model by known PD risk factors such as ageing, exposure to toxins and genetic defects. The significant outcome of the paper is the demonstration that it is possible to reproduce in silico the multi-factorial interactions that characterise the pathogenesis of PD. As such, the model provides a systematic explanation of the variability and heterogeneity of PD and provides the basis for computational studies of further facets of this complex multi-factorial condition. [Includes supplementary material].

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources