Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May-Jun;6(3):206-9.
doi: 10.4161/chan.20883. Epub 2012 May 1.

Voltage-sensing phosphatase reveals temporal regulation of TRPC3/C6/C7 channels by membrane phosphoinositides

Affiliations

Voltage-sensing phosphatase reveals temporal regulation of TRPC3/C6/C7 channels by membrane phosphoinositides

Kyohei Itsuki et al. Channels (Austin). 2012 May-Jun.

Abstract

TRPC3/C6/C7 channels, a subgroup of classical/canonical TRP channels, are activated by diacylglycerol produced via activation of phospholipase C (PLC)-coupled receptors. Recognition of the physiological importance of these channels has been steadily growing, but the mechanism by which they are regulated remains largely unknown. We recently used a membrane-resident danio rerio voltage-sensing phosphatase (DrVSP) to study TRPC3/C6/C7 regulation and found that the channel activity was controlled by PtdIns(4,5)P(2)-DAG signaling in a self-limiting manner (Imai Y et al., the Journal of Physiology, 2012). In this addendum, we present the advantages of using DrVSP as a molecular tool to study PtdIns(4,5)P(2) regulation. DrVSP should be readily applicable for studying phosphoinositide metabolism-linked channel regulation as well as lipid dynamics. Furthermore, in comparison to other modes of self-limiting ion channel regulation, the regulation of TRPC3/C6/C7 channels seems highly susceptible to activation signal strength, which could potentially affect both open duration and the time to peak activation and inactivation. Dysfunction of such self-limiting regulation may contribute to the pathology of the cardiovascular system, gastrointestinal tract and brain, as these channels are broadly distributed and affected by numerous neurohormonal agonists.

PubMed Disclaimer

Figures

None
Figure 1. DrVSPs on TRPC currents. (A) top: Exemplar of the voltage-dependence of VMI (r) of TRPC3/C6/C7 currents observed in HEK cells. TRPC6 currents were evoked by external application of the DAG lipase inhibitor RHC80267 (100 μM). r indicates the residual current after depolarization. The red arrow shows the transient inhibition elicited by the depolarization. Bottom: VMI of TRPC6 currents plotted against depolarization pulse amplitude applied in the presence of the indicated DrVSP mutants (n = more than 4). Note that the Q-V curves of the mutants are also shifted leftward [V1/2(OFF] values for R153Q, T156R and I165R are 16, 73 and 60 mV, respectively). (B) top: Atypical inhibition trace obtained from HEK cells co-transfected with TRPC6 and wild-type DrVSP. Brief depolarizations (+100 mV, 500 ms) were applied every 10 sec (protocol displayed in top), and currents were evoked by CCh (100 μM). Middle and bottom: r and τ-recovery are plotted against stimulus number from the upper trace. The blue dashed line in the middle panel suggests DrVSP-available PtdIns(4,5)P2 (speculative). The typical trace, averaged r, and averaged τ-recovery data were shown in ref. .
None
Figure 2. Self-limiting regulatory systems in ion channels. Schemes for channel opening (Cho). (A): Voltage-gated sodium channels (rNaV1.2) in vertebrates open (+) and quickly inactivate (–) in response to depolarization (ψ1 and ψ2: difference in the potentials coordinate the V-shaped current trace). (B): High voltage-gated Ca channels (CaV1.2) open upon membrane depolarization (ψ1) and inactivate due to negative feedback regulation wherein Ca2+ permeating through the channels inactivates the channels (calcium-dependent inactivation). (C): Ligand-gated cys-loop receptors (P2X1) are activated and then desensitized by the concentration-dependent binding of an agonist (a). Copyright (1996) National Academy of Sciences, USA (D): TRPC3/C6/C7 channels are activated by DAG, a product of PtdIns(4,5)P2, and the resultant reduction in PtdIns(4,5)P2 independently inhibits channel opening. Strength linkages with G protein-coupled receptors alter the kinetics in TRPC6 currents (tight and loose linkages are represented by the red and black traces, respectively). The respective current traces were obtained from refs. , , and . (E): Currents obtained under self-limiting conditions exhibit faster inactivation than those obtained under unlocked conditions induced by application of excessive PtdIns(4,5)P2 through the patch-pipette (TRPC7 currents obtained from ref. 11).

Comment on

  • Imai Y, Itsuki K, Okamura Y, Inoue R, Mori MX. A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P₂-diacylglycerol signalling. J Physiol. 2012;590:1101–19. doi: 10.1113/jphysiol.2011.221358.

Similar articles

Cited by

References

    1. Hilgemann DW. Local PIP(2) signals: when, where, and how? Pflugers Arch. 2007;455:55–67. doi: 10.1007/s00424-007-0280-9. - DOI - PubMed
    1. Ueno T, Falkenburger BH, Pohlmeyer C, Inoue T. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization. Sci Signal. 2011;4:ra87. doi: 10.1126/scisignal.2002033. - DOI - PMC - PubMed
    1. Okamura Y, Murata Y, Iwasaki H. Voltage-sensing phosphatase: actions and potentials. J Physiol. 2009;587:513–20. doi: 10.1113/jphysiol.2008.163097. - DOI - PMC - PubMed
    1. Hossain MI, Iwasaki H, Okochi Y, Chahine M, Higashijima S, Nagayama K, et al. Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases. J Biol Chem. 2008;283:18248–59. doi: 10.1074/jbc.M706184200. - DOI - PubMed
    1. Beyder A, Rae JL, Bernard C, Strege PR, Sachs F, Farrugia G. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol. 2010;588:4969–85. doi: 10.1113/jphysiol.2010.199034. - DOI - PMC - PubMed

Publication types

Substances