Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(6):e39317.
doi: 10.1371/journal.pone.0039317. Epub 2012 Jun 25.

The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells

Affiliations

The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells

Fabrizio Vincenzi et al. PLoS One. 2012.

Abstract

A(3) adenosine receptors (ARs) play a pivotal role in the development of cancer and their activation is involved in the inhibition of tumor growth. The effects of pulsed electromagnetic fields (PEMFs) on cancer have been controversially discussed and the detailed mechanisms are not yet fully understood. In the past we have demonstrated that PEMFs increased A(2A) and A(3)AR density and functionality in human neutrophils, human and bovine synoviocytes, and bovine chondrocytes. In the same cells, PEMF exposure increased the anti-inflammatory effect mediated by A(2A) and/or A(3)ARs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-tumor effect of A(3)ARs in PC12 rat adrenal pheochromocytoma and U87MG human glioblastoma cell lines in comparison with rat cortical neurons. Saturation binding assays and mRNA analysis revealed that PEMF exposure up-regulated A(2A) and A(3)ARs that are well coupled to adenylate cyclase activity and cAMP production. The activation of A(2A) and A(3)ARs resulted in the decrease of nuclear factor-kappa B (NF-kB) levels in tumor cells, whilst only A(3)ARs are involved in the increase of p53 expression. A(3)AR stimulation mediated an inhibition of tumor cell proliferation evaluated by thymidine incorporation. An increase of cytotoxicity by lactate dehydrogenase (LDH) release and apoptosis by caspase-3 activation in PC12 and U87MG cells, but not in cortical neurons, was observed following A(3)AR activation. The effect of the A(3)AR agonist in tumor cells was enhanced in the presence of PEMFs and blocked by using a well-known selective antagonist. Together these results demonstrated that PEMF exposure significantly increases the anti-tumor effect modulated by A(3)ARs.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts. SS is an employee and Ruggero Cadossi is the president and scientific director of IGEA (Carpi, Italy) who provided the PEMF generator system. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. PEMFs increased A2A and A3AR mRNA levels.
Relative mRNA expression of A1, A2A, A2B and A3ARs in rat cortical neurons, untreated or NGF-treated PC12 cells and U87MG cells in the absence or in the presence of PEMFs. Values are the mean (n = 6) ± SEM.
Figure 2
Figure 2. cAMP modulation by PEMFs up-regulated A2A and A3ARs.
Effect of a well-known A2AAR agonist and antagonist (CGS 21680, 100 nM; SCH 58261, 1 µM) or A3AR agonist and antagonist (Cl-IB-MECA, 100 nM; MRS 1523, 1 µM) in rat cortical neurons, untreated or NGF-treated PC12 cells and U87MG cells in the absence or in the presence of PEMFs on cAMP production. Values are the mean (n = 6) ± SEM.
Figure 3
Figure 3. Inhibition of NF-kB activation by the co-presence of PEMFs and A2A or A3AR agonists.
Effect of a well-known A2AAR agonist and antagonist (CGS 21680, 100 nM; SCH 58261, 1 µM) or A3AR agonist and antagonist (Cl-IB-MECA, 100 nM; MRS 1523, 1 µM) in rat cortical neurons, untreated or NGF-treated PC12 cells and U87MG cells in the absence or in the presence of PEMFs on NF-kB activation which was evaluated by detecting phosphorylated p65 proteins in nuclear extracts. Values are the mean (n = 6) ± SEM.
Figure 4
Figure 4. A3AR agonist and PEMFs increased p53 levels.
Effect of a well-known A2AAR agonist and antagonist (CGS 21680, 100 nM; SCH 58261, 1 µM) or A3AR agonist and antagonist (Cl-IB-MECA, 100 nM; MRS 1523, 1 µM) in rat cortical neurons, untreated or NGF-treated PC12 cells and U87MG cells in the absence or in the presence of PEMFs on p53 levels. Values are the mean (n = 6) ± SEM.
Figure 5
Figure 5. Synergistic effect of A3AR stimulation and PEMFs in the inhibition of tumor cell proliferation.
Effect of a well-known A2AAR agonist and antagonist (CGS 21680, 100 nM; SCH 58261, 1 µM) or A3AR agonist and antagonist (Cl-IB-MECA, 100 nM; MRS 1523, 1 µM) in rat cortical neurons, untreated or NGF-treated PC12 cells and U87MG cells in the absence or in the presence of PEMFs on thymidine incorporation. Values are the mean (n = 6) ± SEM.
Figure 6
Figure 6. Cytotoxicity of A3AR activation and PEMFs in tumor cells.
Effect of a well-known A2AAR agonist and antagonist (CGS 21680, 100 nM; SCH 58261, 1 µM) or A3AR agonist and antagonist (Cl-IB-MECA, 100 nM; MRS 1523, 1 µM) in rat cortical neurons, untreated or NGF-treated PC12 cells and U87MG cells in the absence or in the presence of PEMFs on lactate dehydrogenase (LDH) levels. Values are the mean (n = 6) ± SEM.
Figure 7
Figure 7. PEMF exposure enhanced the A3AR agonist-induced apoptosis in tumor cells.
Effect of a well-known A2AAR agonist and antagonist (CGS 21680, 100 nM; SCH 58261, 1 µM) or A3AR agonist and antagonist (Cl-IB-MECA, 100 nM; MRS 1523, 1 µM) in rat cortical neurons, untreated or NGF-treated PC12 cells and U87MG cells in the absence or in the presence of PEMFs on active caspase 3 levels. Values are the mean (n = 6) ± SEM.

Similar articles

Cited by

References

    1. Borea PA, Gessi S, Bar-Yehuda S, Fishman P. A3 adenosine receptor: pharmacology and role in disease. Handb Exp Pharmacol. 2009;193:297–327. - PubMed
    1. Gessi S, Merighi S, Varani K, Borea PA. Adenosine receptors in health and disease. Adv Pharmacol. 2011;61:41–75. - PubMed
    1. Varani K, Padovan M, Govoni M, Vincenzi F, Trotta F, et al. The role of adenosine receptors in rheumatoid arthritis. Autoimmun Rev. 2010;10:61–64. - PubMed
    1. Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. Biochim Biophys Acta. 2011;1808:1400–1412. - PubMed
    1. Fishman P, Bar-Yehuda S, Synowitz M, Powell JD, Klotz KN, et al. Adenosine receptor and cancer. Handb Exp Pharmacol. 2009;193:399–441. - PMC - PubMed

MeSH terms