Maintenance of genomic integrity after DNA double strand breaks in the human prostate and seminal vesicle epithelium: the best and the worst
- PMID: 22762987
- PMCID: PMC3439595
- DOI: 10.1016/j.molonc.2012.06.001
Maintenance of genomic integrity after DNA double strand breaks in the human prostate and seminal vesicle epithelium: the best and the worst
Abstract
Prostate cancer is one of the most frequent cancer types in men, and its incidence is steadily increasing. On the other hand, primary seminal vesicle carcinomas are extremely rare with less than 60 cases reported worldwide. Therefore the difference in cancer incidence has been estimated to be more than a 100,000-fold. This is astonishing, as both tissues share similar epithelial structure and hormonal cues. Clearly, the two epithelia differ substantially in the maintenance of genomic integrity, possibly due to inherent differences in their DNA damage burden and DNA damage signaling. The DNA damage response evoked by DNA double strand breaks may be relevant, as their faulty repair has been implicated in the formation of common genomic rearrangements such as TMPRSS2-ERG fusions during prostate carcinogenesis. Here, we review DNA damaging processes of both tissues with an emphasis on inflammation and androgen signaling. We discuss how benign prostate and seminal vesicle epithelia respond to acute DNA damage, focusing on the canonical DNA double strand break-induced ATM-pathway, p53 and DNA damage induced checkpoints. We propose that the prostate might be more prone to the accumulation of genetic aberrations during epithelial regeneration than seminal vesicles due to a weaker ability to enforce DNA damage checkpoints.
Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Figures




Similar articles
-
Contrasting DNA damage checkpoint responses in epithelium of the human seminal vesicle and prostate.Prostate. 2012 Jul 1;72(10):1060-70. doi: 10.1002/pros.21509. Epub 2011 Nov 9. Prostate. 2012. PMID: 22072329
-
The distribution of PAX-2 immunoreactivity in the prostate gland, seminal vesicle, and ejaculatory duct: comparison with prostatic adenocarcinoma and discussion of prostatic zonal embryogenesis.Hum Pathol. 2010 Aug;41(8):1145-9. doi: 10.1016/j.humpath.2010.01.010. Epub 2010 Apr 22. Hum Pathol. 2010. PMID: 20413145
-
Incidence of neuroendocrine cells in the seminal vesicles and the prostate--an immunohistochemical study.Int Urol Nephrol. 2002;34(3):357-60. doi: 10.1023/a:1024467000088. Int Urol Nephrol. 2002. PMID: 12899227
-
Recurrent rearrangements in prostate cancer: causes and therapeutic potential.Curr Drug Targets. 2013 Apr;14(4):450-9. doi: 10.2174/1389450111314040006. Curr Drug Targets. 2013. PMID: 23410129 Free PMC article. Review.
-
MR imaging of the prostate and seminal vesicles.Magn Reson Imaging Clin N Am. 1996 Aug;4(3):497-518. Magn Reson Imaging Clin N Am. 1996. PMID: 8873016 Review.
Cited by
-
Prediagnosis aspirin use, DNA methylation, and mortality after breast cancer: A population-based study.Cancer. 2019 Nov 1;125(21):3836-3844. doi: 10.1002/cncr.32364. Epub 2019 Aug 12. Cancer. 2019. PMID: 31402456 Free PMC article.
-
DNA Damage Response in Prostate Cancer.Cold Spring Harb Perspect Med. 2019 Jan 2;9(1):a030486. doi: 10.1101/cshperspect.a030486. Cold Spring Harb Perspect Med. 2019. PMID: 29530944 Free PMC article. Review.
-
Evolution: Back to the future to understand and control prostate cancer.Asian J Urol. 2014 Oct;1(1):4-11. doi: 10.1016/j.ajur.2014.09.007. Epub 2015 Apr 16. Asian J Urol. 2014. PMID: 29511632 Free PMC article. No abstract available.
References
-
- Aumuller, G. , Riva, A. , 1992. Morphology and functions of the human seminal vesicle. Andrologia. 24, 183–196. - PubMed
-
- Bensimon, A. , Schmidt, A. , Ziv, Y. , Elkon, R. , Wang, S.Y. , Chen, D.J. , Aebersold, R. , Shiloh, Y. , 2010. ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci. Signal.. 3, rs3 - PubMed
-
- Berger, M.F. , Lawrence, M.S. , Demichelis, F. , Drier, Y. , Cibulskis, K. , Sivachenko, A.Y. , Sboner, A. , Esgueva, R. , Pflueger, D. , Sougnez, C. , Onofrio, R. , Carter, S.L. , Park, K. , Habegger, L. , Ambrogio, L. , Fennell, T. , Parkin, M. , Saksena, G. , Voet, D. , Ramos, A.H. , Pugh, T.J. , Wilkinson, J. , Fisher, S. , Winckler, W. , Mahan, S. , Ardlie, K. , Baldwin, J. , Simons, J.W. , Kitabayashi, N. , MacDonald, T.Y. , Kantoff, P.W. , Chin, L. , Gabriel, S.B. , Gerstein, M.B. , Golub, T.R. , Meyerson, M. , Tewari, A. , Lander, E.S. , Getz, G. , Rubin, M.A. , Garraway, L.A. , 2011. The genomic complexity of primary human prostate cancer. Nature. 470, 214–220. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous