Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;42(8):806-15.
doi: 10.1016/j.compbiomed.2012.06.004. Epub 2012 Jul 2.

Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines

Affiliations

Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines

Abdulhamit Subasi. Comput Biol Med. 2012 Aug.

Abstract

The motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide a significant source of information for the assessment of neuromuscular disorders. In this work, different types of machine learning methods were used to classify EMG signals and compared in relation to their accuracy in classification of EMG signals. The models automatically classify the EMG signals into normal, neurogenic or myopathic. The best averaged performance over 10 runs of randomized cross-validation is also obtained by different classification models. Some conclusions concerning the impacts of features on the EMG signal classification were obtained through analysis of the classification techniques. The comparative analysis suggests that the fuzzy support vector machines (FSVM) modelling is superior to the other machine learning methods in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. The combined model with discrete wavelet transform (DWT) and FSVM achieves the better performance for internal cross validation (External cross validation) with the area under the receiver operating characteristic (ROC) curve (AUC) and accuracy equal to 0.996 (0.970) and 97.67% (93.5%), respectively. These results show that the proposed model have the potential to obtain a reliable classification of EMG signals, and to assist the clinicians for making a correct diagnosis of neuromuscular disorders.

PubMed Disclaimer

Publication types

LinkOut - more resources