Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(6):e39409.
doi: 10.1371/journal.pone.0039409. Epub 2012 Jun 29.

Prevention of birch pollen-related food allergy by mucosal treatment with multi-allergen-chimers in mice

Affiliations

Prevention of birch pollen-related food allergy by mucosal treatment with multi-allergen-chimers in mice

Elisabeth Hoflehner et al. PLoS One. 2012.

Abstract

Background: Among birch pollen allergic patients up to 70% develop allergic reactions to Bet v 1-homologue food allergens such as Api g 1 (celery) or Dau c 1 (carrot), termed as birch pollen-related food allergy. In most cases, specific immunotherapy with birch pollen extracts does not reduce allergic symptoms to the homologue food allergens. We therefore genetically engineered a multi-allergen chimer and tested if mucosal treatment with this construct could represent a novel approach for prevention of birch pollen-related food allergy.

Methodology: BALB/c mice were poly-sensitized with a mixture of Bet v 1, Api g 1 and Dau c 1 followed by a sublingual challenge with carrot, celery and birch pollen extracts. For prevention of allergy sensitization an allergen chimer composed of immunodominant T cell epitopes of Api g 1 and Dau c 1 linked to the whole Bet v 1 allergen, was intranasally applied prior to sensitization.

Results: Intranasal pretreatment with the allergen chimer led to significantly decreased antigen-specific IgE-dependent β-hexosaminidase release, but enhanced allergen-specific IgG2a and IgA antibodies. Accordingly, IL-4 levels in spleen cell cultures and IL-5 levels in restimulated spleen and cervical lymph node cell cultures were markedly reduced, while IFN-γ levels were increased. Immunomodulation was associated with increased IL-10, TGF-β and Foxp3 mRNA levels in NALT and Foxp3 in oral mucosal tissues. Treatment with anti-TGF-β, anti-IL10R or anti-CD25 antibodies abrogated the suppression of allergic responses induced by the chimer.

Conclusion: Our results indicate that mucosal application of the allergen chimer led to decreased Th2 immune responses against Bet v 1 and its homologue food allergens Api g 1 and Dau c 1 by regulatory and Th1-biased immune responses. These data suggest that mucosal treatment with a multi-allergen vaccine could be a promising treatment strategy to prevent birch pollen-related food allergy.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Experimental design.
Mice were intranasally pretreated with either the chimer (chimer-treat) or sham-treated (poly-sens) 3 times in 7 days intervals followed by 3 intraperitoneal sensitizations with a mixture of rBet v 1, rApi g 1 and rDau c 1 in 2 weeks intervals. Thereafter, mice were sublingually challenged with a mixture of BP, celery and carrot extracts on 3 consecutive days.
Figure 2
Figure 2. IgE-dependent allergen-specific basophil degranulation by sera.
(A) ß-hexosaminidase release from (I.) rBet v 1-, (II.) Api g 1- or (III.) Dau c 1-sensitized mice; each group was i.n. pretreated with rBet v 1 (black bars), rApi g 1 (light-grey bars), rDau c 1 (dark-grey bars) or sham-treated (white bars). (B) ß-hexosaminidase release from mice i.n. pretreated with a mixture of rBet v 1/rApi g 1/rDau c 1 (black bars) compared with poly-sensitized controls (white bars). **p<0.01.
Figure 3
Figure 3. Construction and characterization of the pollen-food-chimer.
(A) Design of the pHis-parallel 2-chimer composed of Bet v 1 protein, flanked by peptides from Api g 1 and Dau c 1. (B) Immunoblot: IgE binding to the chimer of sera from chimer-pretreated/poly-sensitized mice (lane 1) and of BP allergic patients with BPRFA (lane 5, 6, 7), and of Bet v 1 monoclonal antibody (lane 3). Negative controls sera from untreated mouse and non-allergic patient, or buffer control were run in parallel (lane 2, 4, 8. 9).
Figure 4
Figure 4. Antigen-specific cellular and humoral responses in mice pretreated with the chimer and poly-sensitized control mice.
(A) IgE-mediated basophil degranulation. (B) Allergen-specific IgG2a antibodies in sera. (C) Total and antigen-specific IgA antibodies in sera. Chimer-pretreated mice (black bars); poly-sensitized control mice (white bars). *p<0.05, **p<0.01.
Figure 5
Figure 5. Antigen-specific cytokine production in mice pretreated with the chimer and poly-sensitized mice.
(A) IL-5 levels and (B) IFN-γ levels in supernatants of spleen and cervical lymph nodes (CLN) cell cultures after antigen stimulation. Chimer-pretreated mice (black bars); poly-sensitized control mice (white bars). *p<0.05, **p<0.01.
Figure 6
Figure 6. mRNA expression levels of regulatory markers on inductive and local effector sites.
(A) TGF-β, IL-10 and Foxp3 mRNA expression in NALT, and (B) Foxp3 mRNA expression in SLT and BM of chimer-pretreated mice (black bars), shown as relative values in comparison with poly-sensitized controls (white bars). Data are presented as relative ratio of the target genes to the housekeeping gene Alas1.
Figure 7
Figure 7. Effects of blocking antibodies.
(A) Effects of anti-TGF-β, anti-IL-10R and anti-CD25 on levels of IL-5 and IL-4 in supernatants of antigen-stimulated spleen cell cultures. (B) Effects of anti-TGF-β on total and antigen-specific IgA production in sera. Chimer-pretreated mice treated with isotype control antibody (black bars) in comparison with chimer-pretreated and anti-TGF-β treated mice (grey bars), anti-IL10R treated mice (striped bars) and anti-CD25 treated mice (dotted bars). Poly-sensitized control group (white bars). *p<0.05, **p<0.01.
Figure 8
Figure 8. Characterization of Treg cells by Treg suppression assay.
Suppressive activity of Treg cells derived from chimer-treated mice (black bars) and poly-sensitized controls (white bars). Purified CD4+CD25 T effector cells (Teff) and CD4+CD25+ T regulatory cells (Treg) were obtained by cell sorting (MACS), then cultured alone or cocultured in three different ratios (Treg:Teff: 1∶2, 1∶8, 1∶16) in combination with irradiated splenocytes and stimulated by anti-CD3 antibody, before pulsing with [3H] thymidine. The percent suppression mediated by Treg cells is calculated by the following formula: [(cpm of Teff alone – cpm of Teff treated with Treg)/cpm of Teff cells alone]*100.

Similar articles

Cited by

References

    1. Bohle B. The impact of pollen-related food allergens on pollen allergy. Allergy. 2007;62:3–10. - PubMed
    1. Bucher X, Pichler WJ, Dahinden CA, Helbling A. Effect of tree pollen specific, subcutaneous immunotherapy on the oral allergy syndrome to apple and hazelnut. Allergy. 2004;59:1272–1276. - PubMed
    1. Hoffmann-Sommergruber K. Plant allergens and pathogenesis-related proteins. What do they have in common? Int Arch Allergy Immunol. 2000;122:155–166. - PubMed
    1. Steinman H. Oral allergy syndrome - whats new? Current Allergy & Clinical Immunology 22. 2009.
    1. Geroldinger-Simic M, Zelniker T, Aberer W, Ebner C, Egger C, et al. Birch pollen-related food allergy: clinical aspects and the role of allergen-specific IgE and IgG4 antibodies. J Allergy Clin Immunol 127: 616–622 e611. 2011. - PubMed

Publication types

MeSH terms