Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial
- PMID: 22773919
- PMCID: PMC3384782
- DOI: 10.1007/s10742-012-0092-z
Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial
Abstract
Joint modeling of longitudinal and survival data can provide more efficient and less biased estimates of treatment effects through accounting for the associations between these two data types. Sponsors of oncology clinical trials routinely and increasingly include patient-reported outcome (PRO) instruments to evaluate the effect of treatment on symptoms, functioning, and quality of life. Known publications of these trials typically do not include jointly modeled analyses and results. We formulated several joint models based on a latent growth model for longitudinal PRO data and a Cox proportional hazards model for survival data. The longitudinal and survival components were linked through either a latent growth trajectory or shared random effects. We applied these models to data from a randomized phase III oncology clinical trial in mesothelioma. We compared the results derived under different model specifications and showed that the use of joint modeling may result in improved estimates of the overall treatment effect.
Figures



References
-
- Asparouhov, T., Masyn, K., Muthén, B.: Continuous time survival in latent variable models. Proceedings of the Joint Statistical Meeting, ASA Biometrics Section, pp. 180–187 (2006)
-
- Bottomley A., Coens C., Efficace F., Gaafar R., Manegold C., Burgers S., Vincent M., Legrand C., van Meerbeeck J. EORTC-NCIC: symptoms and patient-reported well-being: do they predict survival in malignant pleural mesothelioma? A prognostic factor analysis of EORTC-NCIC 08983: randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma. J. Clin. Oncol. 2007;25:5770–5776. doi: 10.1200/JCO.2007.12.5294. - DOI - PubMed
-
- Cox D.R. Partial likelihood. Biometrika. 1975;62:269–276. doi: 10.1093/biomet/62.2.269. - DOI
LinkOut - more resources
Full Text Sources