Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Sep;85(1):66-76.
doi: 10.1016/j.pep.2012.06.017. Epub 2012 Jul 6.

Comparative structure and function analyses of native and his-tagged forms of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus

Affiliations
Comparative Study

Comparative structure and function analyses of native and his-tagged forms of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus

Con Dogovski et al. Protein Expr Purif. 2012 Sep.

Abstract

Given the rise of multi drug resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to discover new antimicrobial agents. A validated but as yet unexplored target for new antibiotics is dihydrodipicolinate reductase (DHDPR), an enzyme that catalyzes the second step of the lysine biosynthesis pathway in bacteria. We report here the cloning, expression and purification of N-terminally his-tagged recombinant DHDPR from MRSA (6H-MRSA-DHDPR) and compare its secondary and quaternary structure with the wild type (MRSA-DHDPR) enzyme. Comparative analyses demonstrate that recombinant 6H-MRSA-DHDPR is folded and adopts the native tetrameric quaternary structure in solution. Furthermore, kinetic studies show 6H-MRSA-DHDPR is functional, displaying parameters for K(m)(NADH) of 6.0 μM, K(m)(DHDP) of 22 μM, and k(cat) of 21s(-1), which are similar to those reported for the native enzyme. The solution properties and stability of the 6H-MRSA-DHDPR enzyme are also reported in varying physicochemical conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources