Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Sep;34(5):655-69.
doi: 10.1007/s00281-012-0323-y. Epub 2012 Jul 10.

Early life precursors, epigenetics, and the development of food allergy

Affiliations
Review

Early life precursors, epigenetics, and the development of food allergy

Xiumei Hong et al. Semin Immunopathol. 2012 Sep.

Abstract

Food allergy (FA), a major clinical and public health concern worldwide, is caused by a complex interplay of environmental exposures, genetic variants, gene-environment interactions, and epigenetic alterations. This review summarizes recent advances surrounding these key factors, with a particular focus on the potential role of epigenetics in the development of FA. Epidemiologic studies have reported a number of nongenetic factors that may influence the risk of FA, such as timing of food introduction and feeding pattern, diet/nutrition, exposure to environmental tobacco smoking, prematurity and low birth weight, microbial exposure, and race/ethnicity. Current studies on the genetics of FA are mainly conducted using candidate gene approaches, which have linked more than 10 genes to the genetic susceptibility of FA. Studies on gene-environment interactions of FA are very limited. Epigenetic alteration has been proposed as one of the mechanisms to mediate the influence of early life environmental exposures and gene-environment interactions on the development of diseases later in life. The role of epigenetics in the regulation of the immune system and the epigenetic effects of some FA-associated environmental exposures are discussed in this review. There is a particular lack of large-scale prospective birth cohort studies that simultaneously assess the interrelationships of early life exposures, genetic susceptibility, epigenomic alterations, and the development of FA. The identification of these key factors and their independent and joint contributions to FA will allow us to gain important insight into the biological mechanisms by which environmental exposures and genetic susceptibility affect the risk of FA and will provide essential information to develop more effective new paradigms in the diagnosis, prevention, and management of FA.

PubMed Disclaimer

References

    1. Boyce JA, Assa'ad A, Burks AW, et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol. 2010;126(6 Suppl):S1–58. - PMC - PubMed
    1. Sampson HA. Update on food allergy. J Allergy Clin Immunol. 2004;113(5):805–819. quiz 820. - PubMed
    1. Gupta R, Sheikh A, Strachan DP, et al. Time trends in allergic disorders in the UK. Thorax. 2007;62(1):91–96. - PMC - PubMed
    1. Chafen JJ, Newberry SJ, Riedl MA, et al. Diagnosing and managing common food allergies: a systematic review. JAMA. 2010;303(18):1848–1856. - PubMed
    1. Primeau MN, Kagan R, Joseph L, et al. The psychological burden of peanut allergy as perceived by adults with peanut allergy and the parents of peanut-allergic children. Clin Exp Allergy. 2000;30(8):1135–1143. - PubMed

Publication types

MeSH terms

Substances