Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes
- PMID: 22778836
- PMCID: PMC3368653
- DOI: 10.1021/cn100007x
Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes
Abstract
As part of our effort to increase survival of drug candidates and to move our medicinal chemistry design to higher probability space for success in the Neuroscience therapeutic area, we embarked on a detailed study of the property space for a collection of central nervous system (CNS) molecules. We carried out a thorough analysis of properties for 119 marketed CNS drugs and a set of 108 Pfizer CNS candidates. In particular, we focused on understanding the relationships between physicochemical properties, in vitro ADME (absorption, distribution, metabolism, and elimination) attributes, primary pharmacology binding efficiencies, and in vitro safety data for these two sets of compounds. This scholarship provides guidance for the design of CNS molecules in a property space with increased probability of success and may lead to the identification of druglike candidates with favorable safety profiles that can successfully test hypotheses in the clinic.
Keywords: CNS candidates; CNS drugs; Central nervous system (CNS); Madin−Darby canine kidney; P-glycoprotein; cellular toxicity; dofetilide binding; drug−drug interactions; high-throughput screening; human liver microsome stability; hydrogen bond donor; ligand efficiency; ligand-efficiency-dependent lipophilicity; ligand-lipophilicity efficiency; lipophilicity; molecular weight; most basic pKa; passive permeability; polarity; topological polar surface area; transformed human liver epithelial cells; unbound intrinsic clearance.
Figures














Similar articles
-
Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties.ACS Chem Neurosci. 2010 Jun 16;1(6):435-49. doi: 10.1021/cn100008c. Epub 2010 Mar 25. ACS Chem Neurosci. 2010. PMID: 22778837 Free PMC article.
-
Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.ACS Chem Neurosci. 2016 Jun 15;7(6):767-75. doi: 10.1021/acschemneuro.6b00029. Epub 2016 Apr 4. ACS Chem Neurosci. 2016. PMID: 26991242
-
Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs.J Pharmacol Exp Ther. 2002 Dec;303(3):1029-37. doi: 10.1124/jpet.102.039255. J Pharmacol Exp Ther. 2002. PMID: 12438524
-
Medicinal chemical properties of successful central nervous system drugs.NeuroRx. 2005 Oct;2(4):541-53. doi: 10.1602/neurorx.2.4.541. NeuroRx. 2005. PMID: 16489364 Free PMC article. Review.
-
Recent advances in the in vitro and in vivo methods to assess impact of P-glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition.Biopharm Drug Dispos. 2023 Feb;44(1):7-25. doi: 10.1002/bdd.2345. Epub 2023 Feb 5. Biopharm Drug Dispos. 2023. PMID: 36692150 Review.
Cited by
-
Development of a Potent Brain-Penetrant EGFR Tyrosine Kinase Inhibitor against Malignant Brain Tumors.ACS Med Chem Lett. 2020 May 1;11(10):1799-1809. doi: 10.1021/acsmedchemlett.9b00599. eCollection 2020 Oct 8. ACS Med Chem Lett. 2020. PMID: 33062157 Free PMC article.
-
Neuroprotective Efficacy of a Sigma 2 Receptor/TMEM97 Modulator (DKR-1677) after Traumatic Brain Injury.ACS Chem Neurosci. 2019 Mar 20;10(3):1595-1602. doi: 10.1021/acschemneuro.8b00543. Epub 2018 Dec 3. ACS Chem Neurosci. 2019. PMID: 30421909 Free PMC article.
-
Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors.PLoS One. 2014 Mar 27;9(3):e87851. doi: 10.1371/journal.pone.0087851. eCollection 2014. PLoS One. 2014. PMID: 24676346 Free PMC article.
-
Drug-Like Protein-Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology.Mol Inform. 2014 Jun;33(6-7):414-437. doi: 10.1002/minf.201400040. Epub 2014 Jun 2. Mol Inform. 2014. PMID: 25254076 Free PMC article. Review.
-
The Identification of GPR52 Agonist HTL0041178, a Potential Therapy for Schizophrenia and Related Psychiatric Disorders.ACS Med Chem Lett. 2023 Mar 14;14(4):499-505. doi: 10.1021/acsmedchemlett.3c00052. eCollection 2023 Apr 13. ACS Med Chem Lett. 2023. PMID: 37077397 Free PMC article.
References
-
- Kola I.; Landis J. (2004) Opinion: Can the pharmaceutical industry reduce attrition rates?. Nat. Rev. Drug Discovery 3, 711–716. - PubMed
-
- O'Shea R.; Moser H. E. (2008) Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878. - PubMed
-
- Leeson Paul D.; Davis Andrew M. (2004) Time-related differences in the physical property profiles of oral drugs. J. Med. Chem. 47, 6338–6348. - PubMed
-
- Veber D. F.; Johnson S. R.; Cheng H.-Y.; Smith B. R.; Ward K. W.; Kopple K. D. (2002) Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623. - PubMed
-
- Proudfoot J. R. (2005) The evolution of synthetic oral drug properties. Bioorg. Med. Chem. Lett. 15, 1087–1090. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials