Cyanobacteria of the genus prochlorothrix
- PMID: 22783229
- PMCID: PMC3390582
- DOI: 10.3389/fmicb.2012.00173
Cyanobacteria of the genus prochlorothrix
Abstract
Green cyanobacteria differ from the blue-green cyanobacteria by the possession of a chlorophyll-containing light-harvesting antenna. Three genera of the green cyanobacteria namely Acaryochloris, Prochlorococcus, and Prochloron are unicellular and inhabit marine environments. Prochlorococcus marinus attracts most attention due to its prominent role in marine primary productivity. The fourth genus Prochlorothrix is represented by the filamentous freshwater strains. Unlike the other green cyanobacteria, Prochlorothrix strains are remarkably rare: to date, living isolates have been limited to two European locations. Taking into account fluctuating blooms, morphological resemblance to Planktothrix and Pseudanabaena, and unsuccessful attempts to obtain enrichments of Prochlorothrix, the most successful strategy to search for this cyanobacterium involves PCR with environmental DNA and Prochlorothrix-specific primers. This approach has revealed a broader distribution of Prochlorothrix. Marker genes have been found in at least two additional locations. Despite of the growing evidence for naturally occurring Prochlorothrix, there are only a few cultured strains with one of them (PCC 9006) being claimed to be axenic. In multixenic cultures, Prochlorothrix is accompanied by heterotrophic bacteria indicating a consortium-type association. The genus Prochlorothrix includes two species: P. hollandica and P. scandica based on distinctions in genomic DNA, cell size, temperature optimum, and fatty acid composition of membrane lipids. In this short review the properties of cyanobacteria of the genus Prochlorothrix are described. In addition, the evolutionary scenario for green cyanobacteria is suggested taking into account their possible role in the origin of simple chloroplast.
Keywords: Prochlorophytes; Prochlorothrix; cyanobacteria.
Figures






Similar articles
-
Draft genome of Prochlorothrix hollandica CCAP 1490/1T (CALU1027), the chlorophyll a/b-containing filamentous cyanobacterium.Stand Genomic Sci. 2016 Oct 18;11:82. doi: 10.1186/s40793-016-0204-4. eCollection 2016. Stand Genomic Sci. 2016. PMID: 27777652 Free PMC article.
-
Excitation energy relaxation in a symbiotic cyanobacterium, Prochloron didemni, occurring in coral-reef ascidians, and in a free-living cyanobacterium, Prochlorothrix hollandica.Biochim Biophys Acta. 2012 Nov;1817(11):1992-7. doi: 10.1016/j.bbabio.2012.06.008. Epub 2012 Jun 21. Biochim Biophys Acta. 2012. PMID: 22728755
-
Localization of Pcb antenna complexes in the photosynthetic prokaryote Prochlorothrix hollandica.Biochim Biophys Acta. 2010 Jan;1797(1):89-97. doi: 10.1016/j.bbabio.2009.09.002. Epub 2009 Sep 15. Biochim Biophys Acta. 2010. PMID: 19761753
-
The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria?Crit Rev Microbiol. 1993;19(1):43-59. doi: 10.3109/10408419309113522. Crit Rev Microbiol. 1993. PMID: 8481212 Review.
-
Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies.Trends Microbiol. 2002 Mar;10(3):134-42. doi: 10.1016/s0966-842x(02)02319-3. Trends Microbiol. 2002. PMID: 11864823 Review.
Cited by
-
Draft genome of Prochlorothrix hollandica CCAP 1490/1T (CALU1027), the chlorophyll a/b-containing filamentous cyanobacterium.Stand Genomic Sci. 2016 Oct 18;11:82. doi: 10.1186/s40793-016-0204-4. eCollection 2016. Stand Genomic Sci. 2016. PMID: 27777652 Free PMC article.
-
Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes.Front Ecol Evol. 2014;2(66):10.3389/fevo.2014.00066. doi: 10.3389/fevo.2014.00066. Front Ecol Evol. 2014. PMID: 25729749 Free PMC article.
-
Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.mSystems. 2016 May 17;1(3):e00024-16. doi: 10.1128/mSystems.00024-16. eCollection 2016 May-Jun. mSystems. 2016. PMID: 27822538 Free PMC article.
-
Emergence of fractal geometries in the evolution of a metabolic enzyme.Nature. 2024 Apr;628(8009):894-900. doi: 10.1038/s41586-024-07287-2. Epub 2024 Apr 10. Nature. 2024. PMID: 38600380 Free PMC article.
-
Heterotrophy among Cyanobacteria.ACS Omega. 2023 Sep 6;8(37):33098-33114. doi: 10.1021/acsomega.3c02205. eCollection 2023 Sep 19. ACS Omega. 2023. PMID: 37744813 Free PMC article. Review.
References
-
- Aziz R. K, Bartels, D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M., Kubal M., Meyer F., Olsen G. J., Olson R., Osterman A. L., Overbeek R. A., McNeil L. K., Paarmann D., Paczian T., Parrello B., Pusch G. D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75.10.1186/1471-2164-9-75 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases