A comparison of 4D time-resolved MRA with keyhole and 3D time-of-flight MRA at 3.0 T for the evaluation of cerebral aneurysms
- PMID: 22784396
- PMCID: PMC3492185
- DOI: 10.1186/1471-2377-12-50
A comparison of 4D time-resolved MRA with keyhole and 3D time-of-flight MRA at 3.0 T for the evaluation of cerebral aneurysms
Abstract
Background: A subarachnoid hemorrhage (SAH) due to the rupture of a cerebral aneurysm (CA) is a devastating event associated with high rates of mortality. Magnetic resonance angiography (MRA), as a noninvasive technique, is typically used initially. The object of our study is to evaluate the feasibility of 4D time-resolved MRA with keyhole (4D-TRAK) for the diagnostic accuracy and reliability of the detection and characterization of cerebral aneurysms (CAs), with a comparison of 3D time-of-flight MRA (3D-TOF-MRA) by using DSA as a reference.
Methods: 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE) and CE timing robust angiography (CENTRA) k-space sampling techniques at a contrast dose of 10 ml at 3 T. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference.
Results: The overall image quality of 4D-TRAK with a contrast dose of 10 ml was in the diagnostic range but still cannot be compared with that of 3D-TOF-MRA. In 52 patients with suspected CAs, fifty-eight CAs were confirmed on 3D-DSA finally. Fifty-one (with 2 false-positives and 9 false-negatives) and 58 (with 1 false-positive and 1 false-negative) CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31%, 93.33%, 85.71% and 98.08%, 100%, 85.71%, respectively, and 74.07%, 75.00%, 66.67% and 96.30%, 95.83%, 100% on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter <3 mm, measured on 3D-DSA), 9 were missed on 4D-TRAK and 1 on 3D-TOF-MRA (P = 0.008). However, for 39 CAs with maximal diameter ≥ 3 mm, the diagnostic accuracy is equally (39 on 4D-TRAK vs. 39 on 3D-TOF-MRA) (P = 1). In four larger CAs with maximal diameter ≥ 10 mm, 4D-TRAK provided a better characterization of morphology than 3D-TOF-MRA.
Conclusion: 4D-TRAK at a lower contrast dose of 10 ml with a combination of SENSE and CENTRA at 3 T could provide similar diagnostic accuracy rate for CAs with maximal diameter ≥ 3 mm, and a better characterization of morphology for larger CAs with maximal diameter ≥ 10 mm compared to 3D-TOF-MRA. However, further study is still needed to improve the "vascular edge" artifact and the compromise in spatial resolution in depiction of CAs with maximal diameter<3 mm.
Figures
References
-
- Zhou B, Li MH, Wang W, Xu HW, Cheng YD, Wang J. Three-dimensional volume-rendering technique in the angiographic follow-up of cerebral aneurysms embolized with coils. J Neurosurg. 2010;112(3):674–680. - PubMed
-
- Shi WY, Li YD, Li MH, Gu BX, Chen SW, Wang W, Zhang BL, Li M. 3D rotational angiography with volume rendering: The utility in the detection of cerebral aneurysms. Neurol India. 2010;58(6):908–913. - PubMed
-
- Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology. 2007;243(3):812–819. - PubMed
-
- Tang PH, Hui F, Sitoh YY. Cerebral aneurysm detection with 3 T magnetic resonance angiography. Ann Acad Med Singapore. 2007;36(6):388–393. - PubMed
-
- White PM, Wardlaw JM, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology. 2000;217(2):361–370. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
