Large-scale replication and heterogeneity in Parkinson disease genetic loci
- PMID: 22786590
- PMCID: PMC3414661
- DOI: 10.1212/WNL.0b013e318264e353
Large-scale replication and heterogeneity in Parkinson disease genetic loci
Abstract
Objective: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown.
Methods: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry.
Results: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78-0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14-1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I(2) estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD.
Conclusion: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity.
Figures
Comment in
-
Genetic heterogeneity in Parkinson disease: the meaning of GWAS and replication studies.Neurology. 2012 Aug 14;79(7):619-20. doi: 10.1212/WNL.0b013e318264e3d2. Epub 2012 Jul 11. Neurology. 2012. PMID: 22786592 No abstract available.
References
-
- McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev 2008; 9: 356– 369. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous