Optogenetic manipulation of neural circuits and behavior in Drosophila larvae
- PMID: 22790083
- PMCID: PMC3751580
- DOI: 10.1038/nprot.2012.079
Optogenetic manipulation of neural circuits and behavior in Drosophila larvae
Abstract
Optogenetics is a powerful tool that enables the spatiotemporal control of neuronal activity and circuits in behaving animals. Here, we describe our protocol for optical activation of neurons in Drosophila larvae. As an example, we discuss the use of optogenetics to activate larval nociceptors and nociception behaviors in the third-larval instar. We have previously shown that, using spatially defined GAL4 drivers and potent UAS (upstream activation sequence)-channelrhodopsin-2∷YFP transgenic strains developed in our laboratory, it is possible to manipulate neuronal populations in response to illumination by blue light and to test whether the activation of defined neural circuits is sufficient to shape behaviors of interest. Although we have only used the protocol described here in larval stages, the procedure can be adapted to study neurons in adult flies--with the caveat that blue light may not sufficiently penetrate the adult cuticle to stimulate neurons deep in the brain. This procedure takes 1 week to culture optogenetic flies and ~1 h per group for the behavioral assays.
Figures




Similar articles
-
Optogenetic Stimulation of Nociceptive Escape Behaviors in Drosophila Larvae.Cold Spring Harb Protoc. 2025 Apr 1;2025(4):pdb.prot108128. doi: 10.1101/pdb.prot108128. Cold Spring Harb Protoc. 2025. PMID: 39095077
-
Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.J Neurophysiol. 2009 Jun;101(6):3075-88. doi: 10.1152/jn.00071.2009. Epub 2009 Apr 1. J Neurophysiol. 2009. PMID: 19339465 Free PMC article.
-
Optogenetics in Drosophila Neuroscience.Methods Mol Biol. 2016;1408:167-75. doi: 10.1007/978-1-4939-3512-3_11. Methods Mol Biol. 2016. PMID: 26965122
-
Novel genetic approaches to behavior in Drosophila.J Neurogenet. 2017 Dec;31(4):288-299. doi: 10.1080/01677063.2017.1395875. Epub 2017 Nov 9. J Neurogenet. 2017. PMID: 29119859 Review.
-
Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight.Curr Opin Neurobiol. 2009 Oct;19(5):553-60. doi: 10.1016/j.conb.2009.08.001. Epub 2009 Sep 24. Curr Opin Neurobiol. 2009. PMID: 19781935 Free PMC article. Review.
Cited by
-
Whole-Body Imaging of Neural and Muscle Activity during Behavior in Hydra vulgaris: Effect of Osmolarity on Contraction Bursts.eNeuro. 2020 Aug 24;7(4):ENEURO.0539-19.2020. doi: 10.1523/ENEURO.0539-19.2020. Print 2020 Jul/Aug. eNeuro. 2020. PMID: 32699071 Free PMC article.
-
Optogenetic Stimulation of Nociceptive Escape Behaviors in Drosophila Larvae.Cold Spring Harb Protoc. 2025 Apr 1;2025(4):pdb.prot108128. doi: 10.1101/pdb.prot108128. Cold Spring Harb Protoc. 2025. PMID: 39095077
-
Optogenetic control of Drosophila neurons: a laboratory practical for undergraduates and outreach.J Microbiol Biol Educ. 2024 Dec 12;25(3):e0008624. doi: 10.1128/jmbe.00086-24. Epub 2024 Sep 3. J Microbiol Biol Educ. 2024. PMID: 39225469 Free PMC article.
-
Drosophila melanogaster foraging regulates a nociceptive-like escape behavior through a developmentally plastic sensory circuit.Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23286-23291. doi: 10.1073/pnas.1820840116. Epub 2019 Jun 18. Proc Natl Acad Sci U S A. 2020. PMID: 31213548 Free PMC article.
-
Neural Design Principles for Subjective Experience: Implications for Insects.Front Behav Neurosci. 2021 May 5;15:658037. doi: 10.3389/fnbeh.2021.658037. eCollection 2021. Front Behav Neurosci. 2021. PMID: 34025371 Free PMC article.
References
-
- Sweeney ST, Broadie K, Keane J, Niemann H, O'Kane CJ. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 1995;14:341–351. - PubMed
-
- White B, Osterwalder T, Keshishian H. Molecular genetic approaches to the targeted suppression of neuronal activity. Curr Biol. 2001;11:R1041–1053. - PubMed
-
- Paradis S, Sweeney ST, Davis GW. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron. 2001;30:737–749. - PubMed
-
- Kitamoto T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol. 2001;47:81–92. - PubMed
-
- Nitabach MN, Blau J, Holmes TC. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell. 2002;109:485–495. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials