Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 13:738:35-40.
doi: 10.1016/j.aca.2012.06.008. Epub 2012 Jun 14.

Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode

Affiliations

Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode

Shuxian Mao et al. Anal Chim Acta. .

Abstract

We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag@C modified glassy carbon (Ag@C/GC) electrode. The Ag@C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag@C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag@C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0×10(-7) to 1.0×10(-4) M with a detection limit of 4.0×10(-8) M (S/N=3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers enhanced sensitivity and may trigger the possibilities of the Ag@C nanocomposite towards diverse applications in biosensor and electroanalysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources