Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Aug 15;160C(3):165-74.
doi: 10.1002/ajmg.c.31336. Epub 2012 Jul 12.

Ciliary disorder of the skeleton

Affiliations
Review

Ciliary disorder of the skeleton

Celine Huber et al. Am J Med Genet C Semin Med Genet. .

Abstract

In the last 10 years, the primary cilia machinery has been implicated in more than a dozen disorders united as ciliopathies, including skeletal dysplasias, such as Jeune syndrome and short rib-polydactyly type III. Indeed, primary cilia play a vital role in transduction of signals in the hedgehog pathway that is especially important in skeletal development. In this review, we focus on skeletal conditions belonging to the ciliopathy group: the short rib-polydactyly group (SRPs) that includes Verma-Naumoff syndrome (SRP type III), Majewski syndrome (SRP type II), Jeune syndrome (ATD), as well as Ellis-van Creveld syndrome (EVC), the Sensenbrenner syndrome, and, finally, Weyers acrofacial dysostosis. Today, 10 different genes have been identified as responsible for seven "skeletal" ciliopathies. Mutations have been identified in dynein motor (DYNC2H1), in intraflagellar transport (IFT) complexes (IFT80, IFT122, IFT43, WDR35, WDR19, and TTC21B) as well as in genes responsible for the basal body (NEK1, EVC, and EVC2). The wide clinical variability observed for an individual ciliopathy gene supports the development of exome strategy specifically dedicated to cilia genes to identify mutations in this particularly heterogeneous group of disorders.

PubMed Disclaimer