Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(7):e40438.
doi: 10.1371/journal.pone.0040438. Epub 2012 Jul 11.

A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings

Affiliations

A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings

Andrés Alvarado et al. PLoS One. 2012.

Abstract

Transmissible plasmids are responsible for the spread of genetic determinants, such as antibiotic resistance or virulence traits, causing a large ecological and epidemiological impact. Transmissible plasmids, either conjugative or mobilizable, have in common the presence of a relaxase gene. Relaxases were previously classified in six protein families according to their phylogeny. Degenerate primers hybridizing to coding sequences of conserved amino acid motifs were designed to amplify related relaxase genes from γ-Proteobacterial plasmids. Specificity and sensitivity of a selected set of 19 primer pairs were first tested using a collection of 33 reference relaxases, representing the diversity of γ-Proteobacterial plasmids. The validated set was then applied to the analysis of two plasmid collections obtained from clinical isolates. The relaxase screening method, which we call "Degenerate Primer MOB Typing" or DPMT, detected not only most known Inc/Rep groups, but also a plethora of plasmids not previously assigned to any Inc group or Rep-type.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. DPMT validation for MOBF relaxases.
A) Phylogenetic tree of MOBF relaxases. Triangles at the end of the branches represent a compressed group of very similar relaxases (>95%). A solid black arrow points to the prototype plasmid for each subfamily. Arrows point to plasmids that experimentally amplified, in spite of containing at least one mismatch in the 12 nucleotides of the CORE sequence. Relaxases contained in our reference collection (Table 1) are denoted by an asterisk. Plasmids detectable by PBRT amplification , , , , , , , , are underlined. New relaxase sequences uncovered by DPMT are shown in red. B) Alignment of the relaxase motifs used to design the MOBF degenerate primers. Colour code: red on yellow  =  invariant amino acids; blue on blue  =  strongly conserved; black on green  =  similar; green on white  =  weakly similar; black on white  =  not conserved. Black arrowheads point to the key residues that define the relaxase motifs. Different rectangles embrace the conserved amino acids used to infer the 3′ degenerate core of each oligonucleotide (F11-f, continuous black; F12-f, continuous dark grey; and F1-r, dashed black). C) Amplicons obtained with primers for subfamily MOBF11 (F11-f and F1-r). Lane 1, pSU1588; 2, pSU4280; 3, pSU10013; 4, pSU10014; 5, pSU10017; 6, pSU10018; 7, pSU10021; 8, pSU316; 9, pSU10022; 10, pSU10010; 11, R751; 12, pSU10028; 13, pSU10029; 14, pSU10056; 15, pSU10055; 16, pSU10001; 17, pSU10012; 18, pSU10011; 19, pSU10009; 20, pSU4601; 21, pSU10006; 22, pSU10007; 23, pSU10064; 24, pSU10059; 25, pSU10008; 26, pSU10039; 27, pSU10040; 28, pSU10041; 29, pSU10004; 30, pSU10003; 31, pSU10043; 32, pSU4830; 33, pSU10002; 34, negative control. Lane M, molecular mass marker, HyperLadder IV (Bioline). D) Amplicons obtained with primers for subfamily MOBF12 (F12-f and F1-r). Lanes as in (C).
Figure 2
Figure 2. DPMT validation for MOBP1 relaxases.
A) Phylogenetic tree of MOBP1 relaxases. B) Alignment of the relaxase motifs used to design the MOBP1 degenerate primers (P11-f, continuous black; P12-f, continuous dark grey; P131-f, continuous grey; P14-f, continuous light grey; and P1-r, dashed black). C) Amplicons obtained with primers for subfamily MOBP11 (P11-f and P1-r). D) Amplicons obtained with primers for subfamily MOBP12 (P12-f and P1-r). E) Amplicons obtained with primers for subfamily MOBP13 (P131-f and P1-r). F) Amplicons obtained with primers for subfamily MOBP14 (P14-f and P1-r). Symbols, colour codes and lanes as in Figure 1.
Figure 3
Figure 3. DPMT validation for MOBP3 and MOBP4 relaxases.
A) Phylogenetic tree of MOBP3 and MOBP4 relaxase families. B) Alignment of the relaxase motifs used to design the MOBP3 and MOBP4 degenerate primers (P3-f+P3-r, continuous black; and P4-f+P4-r, continuous dark grey). C) Amplicons obtained with primers for subfamily MOBP31 (P3-f and P3-r). D) Amplicons obtained with primers for subfamily MOBP42 (P4-f and P4-r). Symbols, colour codes and lanes as in Figure 1.
Figure 4
Figure 4. DPMT validation for MOBP5 relaxases.
A) Phylogenetic tree of MOBP5 relaxase family. B) Alignment of the relaxase motifs used to design the MOBP5 degenerate primers (P51-f, continuous black; P52-f, continuous dark grey; P5-r, dashed black; and P53-f+P53-r, continuous grey) C) Amplicons obtained with primers for subfamily MOBP51 (P51-f and P5-r). D) Amplicons obtained with primers for subfamily MOBP52 (P52-f and P5-r). E) Amplicons obtained with primers for subfamily MOBP53 (P53-f and P53-r). Symbols, colour codes and lanes as in Figure 1.
Figure 5
Figure 5. DPMT validation for MOBQ relaxases.
A) Phylogenetic tree of MOBQ relaxase family. B) Alignment of the relaxase motifs used to design the MOBQ degenerate primers (Q11-f+Q11-r, continuous black; Q12-f+Q12-r, continuous dark grey; and Qu-f+Qu-r, continuous grey). C) Amplicons obtained with primers for subfamily MOBQ11 (Q11-f and Q11-r). D) Amplicons obtained with primers for subfamily MOBQ12 (Q12-f and Q12-r). E) Amplicons obtained with primers for subfamily MOBQu (Qu-f and Qu-r). Symbols, colour codes and lanes as in Figure 1.
Figure 6
Figure 6. DPMT validation for MOBH relaxases.
A) Phylogenetic tree of MOBH relaxase family. B) Alignment of the relaxase motifs used to design the MOBH degenerate primers (H11-f+H11-r, continuous black; H121-f+H121-r, continuous dark grey; and H2-f+H2-r, continuous grey). C) Amplicons obtained with primers for subfamily MOBH11 (H11-f and H11-r). D) Amplicons obtained with primers for subfamily MOBH121 (H121-f and H121-r). E) Amplicons obtained with primers for subfamily MOBH2 (H2-f and H2-r). Symbols, colour codes and lanes as in Figure 1.
Figure 7
Figure 7. DPMT validation for MOBC relaxases.
A) Phylogenetic tree of MOBC relaxase family. B) Alignment of the relaxase motifs used to design the MOBC degenerate primers (C11-f+C11-r, continuous black; C12-f+C12-r, continuous dark grey). C) Amplicons obtained with primers for subfamily MOBC11 (C11-f and C11-r). D) Amplicons obtained with primers for subfamily MOBC12 (C12-f and C12-r). Symbols, colour codes and lanes as in Figure 1.
Figure 8
Figure 8. Correspondence between MOB and Rep types.
A) Simplified phylogenetic representation of the five relaxase MOB families considered in this study. Coloured triangles represent the MOB subfamilies amplified by DPTM. Their width and depth correspond, respectively, to the abundance and phylogenetic diversity of their relaxase sequences (Table S1). B) The Inc groups contained within each MOB subfamily are indicated at the right, boxed in the same colour. When no Inc group is contained, the name of a prototype plasmid is given.

Similar articles

Cited by

References

    1. de la Cruz F, Davies J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 2000;8:128–133. - PubMed
    1. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev. 2009;73:750–774. - PMC - PubMed
    1. Garcillan-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev. 2011;35:936–956. - PubMed
    1. Novick RP. Plasmid incompatibility. Microbiol Rev. 1987;51:381–395. - PMC - PubMed
    1. Austin S, Nordstrom K. Partition-mediated incompatibility of bacterial plasmids. Cell. 1990;60:351–354. - PubMed

Publication types

MeSH terms