Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;21(2-3):617-22.
doi: 10.3727/096368911X605556.

Cryopreservation of human adipose tissue-derived stem/progenitor cells using the silk protein sericin

Affiliations
Free article

Cryopreservation of human adipose tissue-derived stem/progenitor cells using the silk protein sericin

Yoshitaka Miyamoto et al. Cell Transplant. 2012.
Free article

Abstract

Adipose tissue-derived stem/progenitor cells (ASCs) have attracted attention as a cell source that replaces marrow stromal cells (MSCs); ASCs may thus have applications in both regenerative medicine and cell transplantation. These medical treatments, however, require a high-quality supply of human ASCs. Therefore, the cryopreservation methods have been improved by changing a component of a cryopreservation medium. Sericin, a protein hydrolysate (with an average molecular weight of 30 kDa) is very rich in serine. The viability and the adipogenic/osteogenic potential of human ASCs were tested after freezing in a cryopreservation medium containing sericin. After thawing, the viability of the human ASCs frozen in the cryopreservation medium was found to be more than 95%. The proliferation rate of human ASCs frozen in CELLBANKER 2, and DMEM/Ham's F-12 medium (serum free) + 10% DMSO, 0.1 mol/L maltose, and 1% sericin was higher than that of the cells frozen in the maintenance medium + 10% DMSO. The adipogenic/osteogenic differentiation capabilities of frozen human ASCs were examined by Oil Red O staining/Von Kossa's method. The human ASCs were frozen using CELLBANKER 2, and DMEM/Ham's F-12 medium (serum free) + 10% DMSO, 0.1 mol/L maltose, and 1% sericin were positive. In conclusion, the cryopreservation medium containing sericin is therefore considered to have a beneficial effect on freezing human ASCs. This serum-free cryopreservation medium should be widely used in regenerative medicine, cell transplantation, and biological research.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources