Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Dec;64(6):1590-8.
doi: 10.1172/JCI109620.

Studies of relationship among bile flow, liver plasma membrane NaK-ATPase, and membrane microviscosity in the rat

Studies of relationship among bile flow, liver plasma membrane NaK-ATPase, and membrane microviscosity in the rat

E B Keefee et al. J Clin Invest. 1979 Dec.

Abstract

Liver plasma membrane (LPM) NaK-ATPase activity, LPM fluidity, and bile acid-independent flow (BAIF) were studied in rats pretreated with one of five experimental agents. Compared with controls, BAIF was increased 24.6% by thyroid hormone and 34.4% by phenobarbital, decreased by ethinyl estradiol, but unchanged by propylene glycol and cortisone acetate. Parallel to the observed changes in BAIF, NaK-ATPase activity also was increased by thyroid hormone (40.8%) and decreased by ethinyl estradiol (26.2%). In contrast, NaK-ATPase activity failed to increase after phenobarbital but did increase 36% after propylene glycol and 34.8% after cortisone acetate. Thus BAIF and NaK-ATPase activity did not always change in parallel. The NaK-ATPase K(m) for ATP was not affected by any of these agents.LPM fluidity, measured by fluorescence polarization using the probe 1,6-diphenyl-1,3,5-hexatriene, was found to be increased by propylene glycol, thyroid hormone, and cortisone acetate, decreased by ethinyl estradiol, and unaffected by phenobarbital. Thus in these cases, induced changes in LPM fluidity paralleled those in NaK-ATPase activity. In no case did Mg-ATPase or 5'-nucleotidase activities change in the same direction as NaK-ATPase, and the activity of neither of these enzymes correlated with LPM fluidity, thus indicating the selective nature of the changes in LPM enzyme activity caused by the agents. These findings indicate that LPM fluidity correlates with NaK-ATPase activity and may influence the activity of this enzyme. However, the nature of the role of LPM NaK-ATPase in bile secretion is uncertain and needs further study.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Methods Biochem Anal. 1960;8:119-43 - PubMed
    1. J Biol Chem. 1959 Mar;234(3):466-8 - PubMed
    1. J Biol Chem. 1957 May;226(1):497-509 - PubMed
    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. Biochim Biophys Acta. 1978 Dec 15;515(4):367-94 - PubMed

Publication types