Metabolic correction of congenital erythropoietic porphyria with iPSCs free of reprogramming factors
- PMID: 22795135
- PMCID: PMC3397263
- DOI: 10.1016/j.ajhg.2012.05.026
Metabolic correction of congenital erythropoietic porphyria with iPSCs free of reprogramming factors
Abstract
Congenital erythropoietic porphyria (CEP) is due to a deficiency in the enzymatic activity of uroporphyrinogen III synthase (UROS); such a deficiency leads to porphyrin accumulation and results in skin lesions and hemolytic anemia. CEP is a candidate for retrolentivirus-mediated gene therapy, but recent reports of insertional leukemogenesis underscore the need for safer methods. The discovery of induced pluripotent stem cells (iPSCs) has opened up new horizons in gene therapy because it might overcome the difficulty of obtaining sufficient amounts of autologous hematopoietic stem cells for transplantation and the risk of genotoxicity. In this study, we isolated keratinocytes from a CEP-affected individual and generated iPSCs with two excisable lentiviral vectors. Gene correction of CEP-derived iPSCs was obtained by lentiviral transduction of a therapeutic vector containing UROS cDNA under the control of an erythroid-specific promoter shielded by insulators. One iPSC clone, free of reprogramming genes, was obtained with a single proviral integration of the therapeutic vector in a genomic safe region. Metabolic correction of erythroblasts derived from iPSC clones was demonstrated by the disappearance of fluorocytes. This study reports the feasibility of porphyria gene therapy with the use of iPSCs.
Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Figures






Similar articles
-
Congenital erythropoietic porphyria: Recent advances.Mol Genet Metab. 2019 Nov;128(3):288-297. doi: 10.1016/j.ymgme.2018.12.008. Epub 2018 Dec 27. Mol Genet Metab. 2019. PMID: 30685241 Free PMC article. Review.
-
Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells.J Mol Med (Berl). 2003 May;81(5):310-20. doi: 10.1007/s00109-003-0438-7. Epub 2003 Apr 30. J Mol Med (Berl). 2003. PMID: 12721665
-
Congenital erythropoietic porphyria: prolonged high-level expression and correction of the heme biosynthetic defect by retroviral-mediated gene transfer into porphyric and erythroid cells.Mol Genet Metab. 1998 Sep;65(1):10-7. doi: 10.1006/mgme.1998.2739. Mol Genet Metab. 1998. PMID: 9787090
-
Effective gene therapy of mice with congenital erythropoietic porphyria is facilitated by a survival advantage of corrected erythroid cells.Am J Hum Genet. 2008 Jan;82(1):113-24. doi: 10.1016/j.ajhg.2007.09.007. Am J Hum Genet. 2008. PMID: 18179890 Free PMC article.
-
Congenital erythropoietic porphyria.Liver Int. 2024 Aug;44(8):1842-1855. doi: 10.1111/liv.15958. Epub 2024 May 8. Liver Int. 2024. PMID: 38717058 Review.
Cited by
-
Modelling human disease with pluripotent stem cells.Curr Gene Ther. 2013 Apr;13(2):99-110. doi: 10.2174/1566523211313020004. Curr Gene Ther. 2013. PMID: 23444871 Free PMC article. Review.
-
New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells.Hum Gene Ther. 2013 Jun;24(6):571-83. doi: 10.1089/hum.2012.251. Hum Gene Ther. 2013. PMID: 23675640 Free PMC article. Review.
-
Anemia: progress in molecular mechanisms and therapies.Nat Med. 2015 Mar;21(3):221-30. doi: 10.1038/nm.3814. Nat Med. 2015. PMID: 25742458 Free PMC article. Review.
-
Congenital erythropoietic porphyria: Recent advances.Mol Genet Metab. 2019 Nov;128(3):288-297. doi: 10.1016/j.ymgme.2018.12.008. Epub 2018 Dec 27. Mol Genet Metab. 2019. PMID: 30685241 Free PMC article. Review.
-
Preventing Pluripotent Cell Teratoma in Regenerative Medicine Applied to Hematology Disorders.Stem Cells Transl Med. 2017 Feb;6(2):382-393. doi: 10.5966/sctm.2016-0201. Epub 2016 Sep 7. Stem Cells Transl Med. 2017. PMID: 28191782 Free PMC article.
References
-
- Anderson K.E., Sassa S., Bishop D.F., Desnick R.J. Disorders of heme biosynthesis: X-linked sideroblastic anemia and the porphyrias. In: Scriver R., Beaudet A.L., Sly W.S., Valle E., editors. The Metabolic and Molecular Bases of Inherited Disease. C McGraw-Hill; New York: 2001. pp. 2961–3062.
-
- Richard E., Robert-Richard E., Ged C., Moreau-Gaudry F., de Verneuil H. Erythropoietic porphyrias: animal models and update in gene-based therapies. Curr. Gene Ther. 2008;8:176–186. - PubMed
-
- Shaw P.H., Mancini A.J., McConnell J.P., Brown D., Kletzel M. Treatment of congenital erythropoietic porphyria in children by allogeneic stem cell transplantation: A case report and review of the literature. Bone Marrow Transplant. 2001;27:101–105. - PubMed
-
- Kauffman L., Evans D.I.K., Stevens R.F., Weinkove C. Bone-marrow transplantation for congenital erythropoietic porphyria. Lancet. 1991;337:1510–1511. - PubMed
-
- Lagarde C., Hamel-Teillac D., De Prost Y., Blanche S., Thomas C., Fischer A., Nordmann Y., Ged C., De Verneuil H. [Allogeneic bone marrow transplantation in congenital erythropoietic porphyria. Gunther's disease] Ann. Dermatol. Venereol. 1998;125:114–117. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials