Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly
- PMID: 22797562
- PMCID: PMC3817024
- DOI: 10.1038/nbt.2303
Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly
Abstract
We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.
Figures






Comment in
-
Channeling DNA for optical mapping.Nat Biotechnol. 2012 Aug;30(8):762-3. doi: 10.1038/nbt.2324. Nat Biotechnol. 2012. PMID: 22871713 No abstract available.
-
DNA: stretch for the camera.Nat Methods. 2012 Sep;9(9):862-3. doi: 10.1038/nmeth.2166. Nat Methods. 2012. PMID: 23097782 No abstract available.
Similar articles
-
Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome.PLoS One. 2013;8(2):e55864. doi: 10.1371/journal.pone.0055864. Epub 2013 Feb 6. PLoS One. 2013. PMID: 23405223 Free PMC article.
-
De novo assembly and phasing of a Korean human genome.Nature. 2016 Oct 13;538(7624):243-247. doi: 10.1038/nature20098. Epub 2016 Oct 5. Nature. 2016. PMID: 27706134
-
BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.Plant Biotechnol J. 2016 Jul;14(7):1523-31. doi: 10.1111/pbi.12513. Epub 2016 Jan 23. Plant Biotechnol J. 2016. PMID: 26801360 Free PMC article.
-
Optical DNA mapping in nanofluidic devices: principles and applications.Lab Chip. 2017 Feb 14;17(4):579-590. doi: 10.1039/c6lc01439a. Lab Chip. 2017. PMID: 28098301 Review.
-
Optical mapping of DNA: single-molecule-based methods for mapping genomes.Biopolymers. 2011 May;95(5):298-311. doi: 10.1002/bip.21579. Epub 2011 Jan 4. Biopolymers. 2011. PMID: 21207457 Review.
Cited by
-
FaNDOM: Fast nested distance-based seeding of optical maps.Patterns (N Y). 2021 May 3;2(5):100248. doi: 10.1016/j.patter.2021.100248. eCollection 2021 May 14. Patterns (N Y). 2021. PMID: 34027500 Free PMC article.
-
Advances in Label-Free Detections for Nanofluidic Analytical Devices.Micromachines (Basel). 2020 Sep 23;11(10):885. doi: 10.3390/mi11100885. Micromachines (Basel). 2020. PMID: 32977690 Free PMC article. Review.
-
A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence assembly of plant genomes.Plant Methods. 2022 Dec 2;18(1):128. doi: 10.1186/s13007-022-00964-1. Plant Methods. 2022. PMID: 36461065 Free PMC article.
-
Interchromosomal core duplicons drive both evolutionary instability and disease susceptibility of the Chromosome 8p23.1 region.Genome Res. 2016 Nov;26(11):1453-1467. doi: 10.1101/gr.211284.116. Epub 2016 Oct 7. Genome Res. 2016. PMID: 27803192 Free PMC article.
-
Genomic approaches for studying crop evolution.Genome Biol. 2018 Sep 21;19(1):140. doi: 10.1186/s13059-018-1528-8. Genome Biol. 2018. PMID: 30241487 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous