Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2012 Sep;43(9):2324-30.
doi: 10.1161/STROKEAHA.112.657759. Epub 2012 Jul 12.

Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy: multicentre magnetic resonance imaging cohort study and meta-analysis

Affiliations
Meta-Analysis

Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy: multicentre magnetic resonance imaging cohort study and meta-analysis

Andreas Charidimou et al. Stroke. 2012 Sep.

Abstract

Background and purpose: Transient focal neurological episodes (TFNE) are recognized in cerebral amyloid angiopathy (CAA) and may herald a high risk of intracerebral hemorrhage (ICH). We aimed to determine their prevalence, clinical neuroimaging spectrum, and future ICH risk.

Methods: This was a multicenter retrospective cohort study of 172 CAA patients. Clinical, imaging, and follow-up data were collected. We classified TFNE into: predominantly positive symptoms ("aura-like" spreading paraesthesias/positive visual phenomena or limb jerking) and predominantly negative symptoms ("transient ischemic attack-like" sudden-onset limb weakness, dysphasia, or visual loss). We pooled our results with all published cases identified in a systematic review.

Results: In our multicenter cohort, 25 patients (14.5%; 95% confidence interval, 9.6%-20.7%) had TFNE. Positive and negative symptoms were equally common (52% vs 48%, respectively). The commonest neuroimaging features were leukoaraiosis (84%), lobar ICH (76%), multiple lobar cerebral microbleeds (58%), and superficial cortical siderosis/convexity subarachnoid hemorrhage (54%). The CAA patients with TFNE more often had superficial cortical siderosis/convexity subarachnoid hemorrhage (but not other magnetic resonance imaging features) compared with those without TFNE (50% vs 19%; P=0.001). Over a median period of 14 months, 50% of TFNE patients had symptomatic lobar ICH. The meta-analysis showed a risk of symptomatic ICH after TFNE of 24.5% (95% confidence interval, 15.8%-36.9%) at 8 weeks, related neither to clinical features nor to previous symptomatic ICH.

Conclusions: TFNE are common in CAA, include both positive and negative neurological symptoms, and may be caused by superficial cortical siderosis/convexity subarachnoid hemorrhage. TFNE predict a high early risk of symptomatic ICH (which may be amenable to prevention). Blood-sensitive magnetic resonance imaging sequences are important in the investigation of such episodes.

PubMed Disclaimer

Comment in

Substances