Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme
- PMID: 22809063
- PMCID: PMC3514331
- DOI: 10.1186/1471-2199-13-24
Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme
Abstract
Background: RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers.
Results: To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5' pre-adenylated donor substrate. The motif V lysine mutant (K246A) showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A) abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA) as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors.
Conclusions: Mutational analysis of the heat stable RNA ligase from Methanobacterium thermoautotrophicum resulted in the creation of an ATP independent ligase. The K97A mutant is defective in the first two steps of ligation but retains full activity in ligation of either RNA or ssDNA to a pre-adenylated linker. The ability of the ligase to function at 65°C should reduce the constraints of RNA secondary structure in RNA ligation experiments.
Figures






Similar articles
-
Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases.J Biol Chem. 2014 Nov 28;289(48):33608-16. doi: 10.1074/jbc.M114.612929. Epub 2014 Oct 16. J Biol Chem. 2014. PMID: 25324547 Free PMC article.
-
Simple and efficient synthesis of 5' pre-adenylated DNA using thermostable RNA ligase.Nucleic Acids Res. 2011 Sep 1;39(17):e117. doi: 10.1093/nar/gkr544. Epub 2011 Jun 30. Nucleic Acids Res. 2011. PMID: 21724605 Free PMC article.
-
Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum.Nucleic Acids Res. 2000 Jun 1;28(11):2221-8. doi: 10.1093/nar/28.11.2221. Nucleic Acids Res. 2000. PMID: 10871342 Free PMC article.
-
Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology.Archaea. 2015 Oct 1;2015:170571. doi: 10.1155/2015/170571. eCollection 2015. Archaea. 2015. PMID: 26494982 Free PMC article. Review.
-
DNA and RNA ligases: structural variations and shared mechanisms.Curr Opin Struct Biol. 2008 Feb;18(1):96-105. doi: 10.1016/j.sbi.2007.12.008. Epub 2008 Feb 8. Curr Opin Struct Biol. 2008. PMID: 18262407 Review.
Cited by
-
Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases.J Biol Chem. 2014 Nov 28;289(48):33608-16. doi: 10.1074/jbc.M114.612929. Epub 2014 Oct 16. J Biol Chem. 2014. PMID: 25324547 Free PMC article.
-
Evaluating bias-reducing protocols for RNA sequencing library preparation.BMC Genomics. 2014 Jul 7;15(1):569. doi: 10.1186/1471-2164-15-569. BMC Genomics. 2014. PMID: 25001197 Free PMC article.
-
Characterisation and engineering of a thermophilic RNA ligase from Palaeococcus pacificus.Nucleic Acids Res. 2024 Apr 24;52(7):3924-3937. doi: 10.1093/nar/gkae149. Nucleic Acids Res. 2024. PMID: 38421610 Free PMC article.
-
High-throughput sequencing reveals circular substrates for an archaeal RNA ligase.RNA Biol. 2017 Aug 3;14(8):1075-1085. doi: 10.1080/15476286.2017.1302640. Epub 2017 Mar 9. RNA Biol. 2017. PMID: 28277897 Free PMC article.
-
Detection of CRISPR adaptation.Biochem Soc Trans. 2020 Feb 28;48(1):257-269. doi: 10.1042/BST20190662. Biochem Soc Trans. 2020. PMID: 32010936 Free PMC article. Review.
References
-
- Nichols NM, Tabor S, McReynolds LA. RNA ligases. Curr Protoc Mol Biol. 2008;Chapter 3:Unit 3.15. - PubMed
-
- Nandakumar J, Ho CK, Lima CD, Shuman S. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J Biol Chem. 2004;279(30):31337–31347. - PubMed
-
- Blondal T, Thorisdottir A, Unnsteinsdottir U, Hjorleifsdottir S, Aevarsson A, Ernstsson S, Fridjonsson OH, Skirnisdottir S, Wheat JO, Hermannsdottir AG. et al.Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single-stranded DNA ligation properties. Nucleic Acids Res. 2005;33(1):135–142. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases