Evolutionary adaptation of marine zooplankton to global change
- PMID: 22809192
- DOI: 10.1146/annurev-marine-121211-172229
Evolutionary adaptation of marine zooplankton to global change
Abstract
Predicting the response of the biota to global change remains a formidable endeavor. Zooplankton face challenges related to global warming, ocean acidification, the proliferation of toxic algal blooms, and increasing pollution, eutrophication, and hypoxia. They can respond to these changes by phenotypic plasticity or genetic adaptation. Using the concept of the evolution of reaction norms, I address how adaptive responses can be unequivocally discerned from phenotypic plasticity. To date, relatively few zooplankton studies have been designed for such a purpose. As case studies, I review the evidence for zooplankton adaptation to toxic algal blooms, hypoxia, and climate change. Predicting the response of zooplankton to global change requires new information to determine (a) the trade-offs and costs of adaptation, (b) the rates of evolution versus environmental change, (c) the consequences of adaptation to stochastic or cyclic (toxic algal blooms, coastal hypoxia) versus directional (temperature, acidification, open ocean hypoxia) environmental change, and (d) the interaction of selective pressures, and evolutionary and ecological processes, in promoting or hindering adaptation.
Similar articles
-
Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean.Mar Environ Res. 2014 Dec;102:78-87. doi: 10.1016/j.marenvres.2014.07.007. Epub 2014 Jul 22. Mar Environ Res. 2014. PMID: 25115741
-
Predicting evolutionary responses to climate change in the sea.Ecol Lett. 2013 Dec;16(12):1488-500. doi: 10.1111/ele.12185. Epub 2013 Oct 1. Ecol Lett. 2013. PMID: 24119205 Review.
-
Projecting coral reef futures under global warming and ocean acidification.Science. 2011 Jul 22;333(6041):418-22. doi: 10.1126/science.1204794. Science. 2011. PMID: 21778392 Review.
-
Chapter 2. Vulnerability of marine turtles to climate change.Adv Mar Biol. 2009;56:151-211. doi: 10.1016/S0065-2881(09)56002-6. Adv Mar Biol. 2009. PMID: 19895975
-
Experimental evolution meets marine phytoplankton.Evolution. 2013 Jul;67(7):1849-59. doi: 10.1111/evo.12035. Epub 2013 Jan 14. Evolution. 2013. PMID: 23815643
Cited by
-
Response of copepods to elevated pCO2 and environmental copper as co-stressors--a multigenerational study.PLoS One. 2013 Aug 7;8(8):e71257. doi: 10.1371/journal.pone.0071257. eCollection 2013. PLoS One. 2013. PMID: 23951121 Free PMC article.
-
Contrasting physiological responses of two populations of the razor clam Tagelus dombeii with different histories of exposure to paralytic shellfish poisoning (PSP).PLoS One. 2014 Aug 25;9(8):e105794. doi: 10.1371/journal.pone.0105794. eCollection 2014. PLoS One. 2014. PMID: 25153329 Free PMC article.
-
In a comfort zone and beyond-Ecological plasticity of key marine mediators.Ecol Evol. 2020 Nov 10;10(24):14067-14081. doi: 10.1002/ece3.6997. eCollection 2020 Dec. Ecol Evol. 2020. PMID: 33391702 Free PMC article.
-
Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants.Evol Appl. 2014 Jan;7(1):104-22. doi: 10.1111/eva.12109. Epub 2013 Oct 14. Evol Appl. 2014. PMID: 24454551 Free PMC article.
-
Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice.Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E4960-7. doi: 10.1073/pnas.1315162110. Epub 2013 Dec 2. Proc Natl Acad Sci U S A. 2013. PMID: 24297880 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials