Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime
- PMID: 22815071
- DOI: 10.1007/s00232-012-9471-1
Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime
Abstract
Molecular dynamics simulations of electroporation of homogeneous phospholipid bilayers show that the pore creation time is strongly dependent on the magnitude of the applied electric field. Here, we investigated whether heterogeneous bilayers containing phospholipids with zwitterionic and anionic headgroups exhibit a similar dependence. To facilitate this analysis we divide the life cycle of an electropore into several stages, marking the sequence of steps for pore creation and pore annihilation (restoration of the bilayer after removal of the electric field). We also report simulations of calcium binding isotherms and the effects of calcium ions on the electroporation of heterogeneous lipid bilayers. Calcium binding simulations are consistent with experimental data using a 1:2 Langmuir binding isotherm. We find that calcium ions and phosphatidylserine increase pore creation time and decrease pore annihilation time. For all systems tested, pore creation time was inversely proportional to the bilayer internal electric field.
Similar articles
-
Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.J Membr Biol. 2013 Nov;246(11):793-801. doi: 10.1007/s00232-013-9549-4. Epub 2013 May 5. J Membr Biol. 2013. PMID: 23644990
-
Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation.J Membr Biol. 2010 Jul;236(1):27-36. doi: 10.1007/s00232-010-9277-y. Epub 2010 Jul 11. J Membr Biol. 2010. PMID: 20623350
-
Electropore Formation in Mechanically Constrained Phospholipid Bilayers.J Membr Biol. 2018 Apr;251(2):237-245. doi: 10.1007/s00232-017-0002-y. Epub 2017 Nov 23. J Membr Biol. 2018. PMID: 29170842
-
Physiological Calcium Concentrations Slow Dynamics at the Lipid-Water Interface.Biophys J. 2018 Oct 16;115(8):1541-1551. doi: 10.1016/j.bpj.2018.08.044. Epub 2018 Sep 6. Biophys J. 2018. PMID: 30269885 Free PMC article.
-
Self-electroporation as a model for fusion pore formation.J Biomol Struct Dyn. 2007 Apr;24(5):495-503. doi: 10.1080/07391102.2007.10507138. J Biomol Struct Dyn. 2007. PMID: 17313195 Review.
Cited by
-
Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.J Membr Biol. 2013 Nov;246(11):793-801. doi: 10.1007/s00232-013-9549-4. Epub 2013 May 5. J Membr Biol. 2013. PMID: 23644990
-
Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy.Sci Rep. 2019 Mar 18;9(1):4758. doi: 10.1038/s41598-019-41188-z. Sci Rep. 2019. PMID: 30894594 Free PMC article.
-
Extracellular-Ca2+-Induced Decrease in Small Molecule Electrotransfer Efficiency: Comparison between Microsecond and Nanosecond Electric Pulses.Pharmaceutics. 2020 May 4;12(5):422. doi: 10.3390/pharmaceutics12050422. Pharmaceutics. 2020. PMID: 32375426 Free PMC article.
-
The Impact of Extracellular Ca2+ and Nanosecond Electric Pulses on Sensitive and Drug-Resistant Human Breast and Colon Cancer Cells.Cancers (Basel). 2021 Jun 28;13(13):3216. doi: 10.3390/cancers13133216. Cancers (Basel). 2021. PMID: 34203184 Free PMC article.
-
Recent Advances in Microscale Electroporation.Chem Rev. 2022 Jul 13;122(13):11247-11286. doi: 10.1021/acs.chemrev.1c00677. Epub 2022 Jun 23. Chem Rev. 2022. PMID: 35737882 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources