Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 13;53(9):5502-14.
doi: 10.1167/iovs.12-10265.

Quantitative morphometry of perifoveal capillary networks in the human retina

Affiliations

Quantitative morphometry of perifoveal capillary networks in the human retina

Geoffrey Chan et al. Invest Ophthalmol Vis Sci. .

Abstract

Purpose: To quantify the distribution and morphometric characteristics of capillary networks in the human perifovea. To determine correlations between the location of neuronal subcellular compartments and the morphometric features of regional capillary networks in the layered retina.

Methods: The perifoveal region, located 2 mm nasal to the fovea, was studied in 17 human donor eyes. Novel micropipette technology was used to cannulate the central retinal artery and label the retinal microcirculation using a phalloidin perfusate. γ-synuclein, Goα, and parvalbumin antibodies were also used to co-localize the nerve fiber layer (NFL), retinal ganglion cell layer (RGCL), inner plexiform layer (IPL), and inner nuclear layer (INL). Confocal scanning laser microscopy was used for capillary imaging. Capillary diameter, capillary density, and capillary loop area measurements were compared between networks.

Results: Four capillary networks were identified in the following retinal layers: (1) NFL, (2) RGCL and superficial portion of IPL, (3) deep portion of IPL and superficial portion of INL, and (4) deep portion of INL. Laminar configurations were present in NFL and deep INL networks. Remaining networks demonstrated three-dimensional configurations. Capillary density was greatest in the networks serving the IPL. Capillary loop area was smallest in the two innermost networks. There was no difference in capillary diameter between networks.

Conclusions: Capillary networks in the human perifovea are morphometrically heterogeneous. Morphometric features of regional capillary networks in the layered retina may serve a critical role in supporting neuronal homeostasis. Improved knowledge of these features may be important for understanding pathogenic mechanisms underlying retinal vascular diseases.

PubMed Disclaimer

Publication types

LinkOut - more resources