Unique suites of trabecular bone features characterize locomotor behavior in human and non-human anthropoid primates
- PMID: 22815902
- PMCID: PMC3399801
- DOI: 10.1371/journal.pone.0041037
Unique suites of trabecular bone features characterize locomotor behavior in human and non-human anthropoid primates
Abstract
Understanding the mechanically-mediated response of trabecular bone to locomotion-specific loading patterns would be of great benefit to comparative mammalian evolutionary morphology. Unfortunately, assessments of the correspondence between individual trabecular bone features and inferred behavior patterns have failed to reveal a strong locomotion-specific signal. This study assesses the relationship between inferred locomotor activity and a suite of trabecular bone structural features that characterize bone architecture. High-resolution computed tomography images were collected from the humeral and femoral heads of 115 individuals from eight anthropoid primate genera (Alouatta, Homo, Macaca, Pan, Papio, Pongo, Trachypithecus, Symphalangus). Discriminant function analyses reveal that subarticular trabecular bone in the femoral and humeral heads is significantly different among most locomotor groups. The results indicate that when a suite of femoral head trabecular features is considered, trabecular number and connectivity density, together with fabric anisotropy and the relative proportion of rods and plates, differentiate locomotor groups reasonably well. A similar, yet weaker, relationship is also evident in the trabecular architecture of the humeral head. The application of this multivariate approach to analyses of trabecular bone morphology in recent and fossil primates may enhance our ability to reconstruct locomotor behavior in the fossil record.
Conflict of interest statement
Figures




References
-
- Kabel J, van Rietbergen B, Odgaard A, Huiskes R. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone. 1999;25:481–486. - PubMed
-
- Mittra E, Rubin C, Qin Y-X. Interrelationships of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech. 2005;38:1229–1237. - PubMed
-
- Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R. Fabric and elastic principal directions of cancellous bone are closely related. J Biomech. 1997;30:487–495. - PubMed
-
- Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25:55–60. - PubMed
-
- van Rietbergen B, Odgaard A, Kabel J, Huiskes R. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech. 1996;29:1653–1657. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources