The identification of nonlinear biological systems: Wiener kernel approaches
- PMID: 2281885
- DOI: 10.1007/BF02368452
The identification of nonlinear biological systems: Wiener kernel approaches
Abstract
Detection, representation, and identification of nonlinearities in biological systems are considered. We begin by briefly but critically examining a well-known test of system nonlinearity, and point out that this test cannot be used to prove that a system is linear. We then concentrate on the representation of nonlinear systems by Wiener's orthogonal functional series, discussing its advantages, limitations, and biological applications. System identification through estimating the kernels in the functional series is considered in detail. An efficient time-domain method of correcting for coloring in inputs is examined and shown to result in significantly improved kernel estimates in a biologically realistic system.
Similar articles
-
The identification of nonlinear biological systems: Volterra kernel approaches.Ann Biomed Eng. 1996 Jul-Aug;24(4):250-68. doi: 10.1007/BF02648117. Ann Biomed Eng. 1996. PMID: 8841729
-
The identification of nonlinear biological systems: Volterra kernel approaches.Ann Biomed Eng. 1996 Mar-Apr;24(2):250-68. doi: 10.1007/BF02667354. Ann Biomed Eng. 1996. PMID: 8678357
-
Nonlinear stochastic system identification of skin using volterra kernels.Ann Biomed Eng. 2013 Apr;41(4):847-62. doi: 10.1007/s10439-012-0726-x. Epub 2012 Dec 22. Ann Biomed Eng. 2013. PMID: 23264003
-
Nonlinear analysis: mathematical theory and biological applications.Crit Rev Biomed Eng. 1986;14(2):127-84. Crit Rev Biomed Eng. 1986. PMID: 3527556 Review.
-
Analyses of non-linear systems and their application to biology: a review.Front Med Biol Eng. 1994;6(1):1-35. Front Med Biol Eng. 1994. PMID: 8060902 Review.
Cited by
-
The identification of nonlinear biological systems: Volterra kernel approaches.Ann Biomed Eng. 1996 Jul-Aug;24(4):250-68. doi: 10.1007/BF02648117. Ann Biomed Eng. 1996. PMID: 8841729
-
Temporal encoding in nervous systems: a rigorous definition.J Comput Neurosci. 1995 Jun;2(2):149-62. doi: 10.1007/BF00961885. J Comput Neurosci. 1995. PMID: 8521284 Review.
-
The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory.PLoS One. 2009 Aug 3;4(8):e6480. doi: 10.1371/journal.pone.0006480. PLoS One. 2009. PMID: 19649257 Free PMC article.
-
System identification of point-process neural systems using probability based Volterra kernels.J Neurosci Methods. 2015 Jan 30;240:179-92. doi: 10.1016/j.jneumeth.2014.11.013. Epub 2014 Dec 3. J Neurosci Methods. 2015. PMID: 25479231 Free PMC article.
-
[Noise attenuation analysis on auditory evoked potential based on maximum length sequence].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Apr 25;35(2):266-272. doi: 10.7507/1001-5515.201703065. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018. PMID: 29745533 Free PMC article. Chinese.
References
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources