Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;37(1):98-102.
doi: 10.1016/j.gaitpost.2012.06.019. Epub 2012 Jul 18.

Stance width influences frontal plane balance responses to centripetal accelerations

Affiliations

Stance width influences frontal plane balance responses to centripetal accelerations

Adam Goodworth et al. Gait Posture. 2013 Jan.

Abstract

Whenever the body is moving in a curvilinear path, inertial torques resulting from centripetal accelerations act on the body and must be counteracted to maintain stability. We tested the hypothesis that healthy subjects orient their center of mass in the position where gravitational torques offset the inertial torques due to centripetal accelerations. Ten healthy subjects stood on a platform that rotated in a circle at either a slow or fast speed, eyes open or closed, and in narrow or wide stance. Upper body, lower body, and center of mass (CoM) tilt with respect to vertical were measured and averaged across a 40 second time period of constant velocity. Body tilt was compared to the gravito-inertial acceleration (GIA) angle with respect to vertical. In all moving conditions, the upper body, lower body, and CoM tilted inward. However, this inward tilt did not reach the predicted GIA angle (CoM tilt was ~78% and 39% toward the predicted GIA angle in narrow and wide stance, respectively). Ratios of body tilt to GIA angle were minimally influenced by visual availability and magnitude of centripetal acceleration; but were largely influenced by stance width whereby narrow stance inward tilt was greater than wide stance. These results further highlight the important influence of the base of support on balance control strategies and enhance our understanding of how the balance control system compensates for inertial torques generated from centripetal accelerations.

PubMed Disclaimer

LinkOut - more resources