A tissue-engineered jellyfish with biomimetic propulsion
- PMID: 22820316
- PMCID: PMC4026938
- DOI: 10.1038/nbt.2269
A tissue-engineered jellyfish with biomimetic propulsion
Abstract
Reverse engineering of biological form and function requires hierarchical design over several orders of space and time. Recent advances in the mechanistic understanding of biosynthetic compound materials, computer-aided design approaches in molecular synthetic biology 4,5 and traditional soft robotics, and increasing aptitude in generating structural and chemical micro environments that promote cellular self-organization have enhanced the ability to recapitulate such hierarchical architecture in engineered biological systems. Here we combined these capabilities in a systematic design strategy to reverse engineer a muscular pump. We report the construction of a freely swimming jellyfish from chemically dissociated rat tissue and silicone polymer as a proof of concept. The constructs, termed 'medusoids', were designed with computer simulations and experiments to match key determinants of jellyfish propulsion and feeding performance by quantitatively mimicking structural design, stroke kinematics and animal-fluid interactions. The combination of the engineering design algorithm with quantitative benchmarks of physiological performance suggests that our strategy is broadly applicable to reverse engineering of muscular organs or simple life forms that pump to survive.
Conflict of interest statement
Figures
References
-
- Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–470. - PubMed
-
- von der Mark K, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010;339:131–153. - PubMed
-
- Fu P. A perspective of synthetic biology: assembling building blocks for novel functions. Biotechnol J. 2006;1:690–699. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
