Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 10;162(2):382-90.
doi: 10.1016/j.jconrel.2012.07.018. Epub 2012 Jul 20.

In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation

Affiliations

In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation

Jung-Sik Kim et al. J Control Release. .

Abstract

Maximum engraftment of transplanted islets is essential for the clinical application of a subcutaneous site. Significant barriers to the current approaches are associated with their low effectiveness, complexity and unproven biosafety. Here, we evaluated and optimized a fibrin-islet composite for effective glycemic control in a subcutaneous site whose environment is highly hypoxic due to low vascularization potential. In the setting of xenogeneic porcine islet transplantation into the subcutaneous space of a diabetic mouse, the in vivo islet functions were greatly affected by the concentrations of fibrinogen and thrombin. The optimized hydrogel-type fibrin remarkably reduced the marginal islet mass to approximately one tenth that of islets without fibrin. This marginal islet mass was comparable to that in the setting of the subcapsular space of the kidney, which is a highly vascularized organ. Highly vascularized structures were generated inside and on the outer surface of the grafts. A hydrogel-type fibrin-islet composite established early diabetic control within an average of 3.4days after the transplantation. In the mechanistic studies, fibrin promoted local angiogenesis, enhanced islet viability and prevented fragmentation of islets into single cells. In conclusion, in situ application of hydrogel-type fibrin-islet composite may be a promising modality in the clinical success of subcutaneous islet transplantation.

PubMed Disclaimer

Publication types