Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012:2012:323261.
doi: 10.1155/2012/323261. Epub 2012 Jul 1.

Pathological roles of wild-type cu, zn-superoxide dismutase in amyotrophic lateral sclerosis

Affiliations

Pathological roles of wild-type cu, zn-superoxide dismutase in amyotrophic lateral sclerosis

Yoshiaki Furukawa. Neurol Res Int. 2012.

Abstract

Dominant mutations in a Cu, Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (ALS). While it remains controversial how SOD1 mutations lead to onset and progression of the disease, many in vitro and in vivo studies have supported a gain-of-toxicity mechanism where pathogenic mutations contribute to destabilizing a native structure of SOD1 and thus facilitate misfolding and aggregation. Indeed, abnormal accumulation of SOD1-positive inclusions in spinal motor neurons is a pathological hallmark in SOD1-related familial ALS. Furthermore, similarities in clinical phenotypes and neuropathology of ALS cases with and without mutations in sod1 gene have implied a disease mechanism involving SOD1 common to all ALS cases. Although pathogenic roles of wild-type SOD1 in sporadic ALS remain controversial, recent developments of novel SOD1 antibodies have made it possible to characterize wild-type SOD1 under pathological conditions of ALS. Here, I have briefly reviewed recent progress on biochemical and immunohistochemical characterization of wild-type SOD1 in sporadic ALS cases and discussed possible involvement of wild-type SOD1 in a pathomechanism of ALS.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Brown RH., Jr. Amyotrophic lateral sclerosis: insights from genetics. Archives of Neurology. 1997;54(10):1246–1250. - PubMed
    1. Deng HX, Hentati A, Tainer JA, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993;261(5124):1047–1051. - PubMed
    1. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62. - PubMed
    1. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–256. - PMC - PubMed
    1. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–268. - PMC - PubMed

LinkOut - more resources