Direct renin inhibition improves parasympathetic function in diabetes
- PMID: 22834767
- PMCID: PMC3524360
- DOI: 10.1111/j.1463-1326.2012.01669.x
Direct renin inhibition improves parasympathetic function in diabetes
Abstract
Aim: The renin-angiotensin-aldosterone system (RAAS) and autonomic nervous system regulate the cardiovascular system. Blockade of the RAAS may slow the progression of end-organ damage. Direct renin inhibition offers a means for blocking the RAAS. The objective of this study was to examine the effect of direct renin inhibition on cardiovascular autonomic function.
Methods: In this double-blind, placebo-controlled trial, 60 individuals with diabetes were randomly assigned to 300 mg of aliskiren or placebo once daily for 6 weeks. The primary end point was a change in tests of cardiovascular autonomic function. Autonomic function was assessed by power spectral analysis and RR-variation during deep breathing [i.e. mean circular resultant (MCR), expiration/inspiration (E/I) ratio]. The MCR and E/I ratio assess parasympathetic function. Secondary measures included change in biochemical parameters [e.g. plasma renin activity, leptin and interleukin-6]. Change in cardiovascular autonomic function and blood analytes were analysed by a mixed effects model for repeated measures.
Results: Baseline characteristics were similar between treatment groups. In response to aliskiren compared with placebo, blood pressure was reduced as well as plasma renin activity [from 2.4 ± 3.8 (mean ± standard deviation) to 0.5 ± 0.4 µg/l/h, p < 0.001]. There was a significant interaction (aliskiren × visit) for MCR (p = 0.003) and E/I ratio (p = 0.003) indicating improvement in MCR and E/I ratio for those on aliskiren. MCR means, baseline vs. follow-up, were 41.8 ± 19.7 vs. 50.8 ± 26.1 (aliskiren) and 38.2 ± 23.6 vs. 37.5 ± 24.1 (placebo).
Conclusions: Parasympathetic function (i.e. MCR and E/I ratio) was enhanced by downregulation of the RAAS.
© 2012 Blackwell Publishing Ltd.
References
-
- Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27:639–653. - PubMed
-
- Maser RE, Lenhard MJ. Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–5903. - PubMed
-
- Schweda F, Kurtz A. Regulation of renin release by local and systemic factors. Rev Physiol Biochem Pharmacol. 2012;161:1–44. - PubMed
-
- Volpe M, Cosentino F, Tocci G, Palano F, Paneni F. Antihypertensive therapy in diabetes: the legacy effect and RAAS blockade. Curr Hypertens Rep. 2011;13:318–324. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical