Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov 30;162(1):81-8.
doi: 10.1016/j.jbiotec.2012.07.002. Epub 2012 Jul 24.

Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H₂ photoproduction in sulphur-deprived Chlamydomonas reinhardtii

Affiliations

Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H₂ photoproduction in sulphur-deprived Chlamydomonas reinhardtii

Emmanuel Mignolet et al. J Biotechnol. .

Abstract

The relative contributions of the PSII-dependent and Nda2-dependent pathways for H₂ photoproduction were investigated in the green microalga Chlamydomonas reinhardtii after suphur-deprivation. For this purpose, H₂ gas production was compared for wild-type and Nda2-deficient cells with or without DCMU (a PSII-inhibitor) in the same experimental conditions. Nda2-deficiency caused a 30% decrease of the maximal H₂ photoevolution rate observed shortly after the establishment of anoxia, and an acceleration of the decline of H₂ photoevolution rate with time. DCMU addition to Nda2-deficient cells completely inhibited H₂ photoproduction, showing that the PSII-independent H₂ photoproduction relies on the presence of Nda2, which feeds the photosynthetic electron transport chain with electrons derived from oxidative catabolism. Nda2-protein abundance increased as a result of sulphur deprivation and further during the H₂ photoproduction process, resulting in high rates of non-photochemical plastoquinone reduction in control cells. Nda2-deficiency had no significant effect on photosynthetic and respiratory capacities in sulphur-deprived cells, but caused changes in the cell energetic status (ATP and NADPH/NADP+ ratio). The rapid decline of H₂ photoevolution rate with time in Nda2-deficient cells revealed a more pronounced inhibition of H₂ photoproduction by accumulated H₂ in the absence of non-photochemical plastoquinone reduction. Nda2 is therefore important for linking H₂ photoproduction with catabolism of storage carbon compounds, and seems also involved in regulating the redox poise of the photosynthetic electron transport chain during H₂ photoproduction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources