Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;71(2 Suppl Operative):ons286-94; discussion ons294-5.
doi: 10.1227/NEU.0b013e31826a8a75.

Brain tumor surgery with 3-dimensional surface navigation

Affiliations

Brain tumor surgery with 3-dimensional surface navigation

Ayguel Mert et al. Neurosurgery. 2012 Dec.

Abstract

Background: Precise lesion localization is necessary for neurosurgical procedures not only during the operative approach, but also during the preoperative planning phase.

Objective: To evaluate the advantages of 3-dimensional (3-D) brain surface visualization over conventional 2-dimensional (2-D) magnetic resonance images for surgical planning and intraoperative guidance in brain tumor surgery.

Methods: Preoperative 3-D brain surface visualization was performed with neurosurgical planning software in 77 cases (58 gliomas, 7 cavernomas, 6 meningiomas, and 6 metastasis). Direct intraoperative navigation on the 3-D brain surface was additionally performed in the last 20 cases with a neurosurgical navigation system. For brain surface reconstruction, patient-specific anatomy was obtained from MR imaging and brain volume was extracted with skull stripping or watershed algorithms, respectively. Three-dimensional visualization was performed by direct volume rendering in both systems. To assess the value of 3-D brain surface visualization for topographic lesion localization, a multiple-choice test was developed. To assess accuracy and reliability of 3-D brain surface visualization for intraoperative orientation, we topographically correlated superficial vessels and gyral anatomy on 3-D brain models with intraoperative images.

Results: The rate of correct lesion localization with 3-D was significantly higher (P = .001, χ), while being significantly less time consuming (P < .001, χ) compared with 2-D images. Intraoperatively, visual correlation was found between the 3-D images, superficial vessels, and gyral anatomy.

Conclusion: The proposed method of 3-D brain surface visualization is fast, clinically reliable for preoperative anatomic lesion localization and patient-specific planning, and, together with navigation, improves intraoperative orientation in brain tumor surgery and is relatively independent of brain shift.

PubMed Disclaimer

LinkOut - more resources