Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;52(3):509-17.
doi: 10.1111/j.1751-1097.1990.tb01793.x.

Sequence-specificity of the alkali-sensitive lesions induced in DNA by high-intensity ultraviolet laser radiation

Affiliations

Sequence-specificity of the alkali-sensitive lesions induced in DNA by high-intensity ultraviolet laser radiation

O I Kovalsky et al. Photochem Photobiol. 1990 Sep.

Abstract

The action of high-intensity (10(9)-10(12) W/m2) UV (266 nm) laser radiation pulses (duration ca 10 ns or ca 40 ps) on liquid aqueous solutions of DNA is known to cause not only single- but also two-quantum modification of nucleic bases. The action of hot piperidine on the laser-irradiated DNA results in non-random splitting of polynucleotide chain. Hence, at least some of the modified nucleoside residues are alkali-sensitive lesions (ASLs). The distribution of ASLs along the DNA chain shows that the position of these lesions corresponds with pyrimidines in the PyPy sequences (similar to those formed via single-quantum conversions) as well as with deoxyguanosine residues. The last ASLs result from two-quantum reactions and occur much more efficiently than the direct photo-induced cleavage of the internucleotide (phosphodiester) bond. It has been shown with fragments of plasmids pUC18, pUC19 and pBR322 (total length over 600 base pairs) that the relative efficiency of ASLs at deoxyguanosine sites depends on the primary structure context and can differ by an order of magnitude. The highest efficiency of modification is observed when a purine is 3' neighbour to the 2'-deoxyguanosine, i.e. at 5'-GPu-3' sites. However, considerable variations in the modification efficiency were also found in these sequences.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources