Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 1;3(6):1798-1803.
doi: 10.1039/C2SC20270K. Epub 2012 Mar 30.

Concise Total Synthesis of (+)-Gliocladins B and C

Affiliations

Concise Total Synthesis of (+)-Gliocladins B and C

Nicolas Boyer et al. Chem Sci. .

Abstract

The first total synthesis of (+)-gliocladin B is described. Our concise and enantioselective synthesis takes advantage of a new regioselective Friedel-Crafts-based strategy to provide an efficient multigram-scale access to the C3-(3'-indolyl)hexahydropyrroloindole substructure, a molecular foundation present in a significant subset of epipolythiodiketopiperazine natural alkaloids. Our first-generation solution to (+)-gliocladin B involved the stereoselective formation of (+)-12-deoxybionectin A, a plausible biosynthetic precursor. Our synthesis clarified the C15 stereochemistry of (+)-gliocladin B and allowed its full structure confirmation. Further studies of a versatile dihydroxylated diketopiperazine provided a concise and efficient synthesis of (+)-gliocladin B as well as access to (+)-gliocladin C.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Representative natural C3-(3′-indolyl)hexahydropyrroloindole alkaloids.
Scheme 1
Scheme 1
Retrosynthetic analysis of (+)-gliocladin B (1), (+)-gliocladin C (4), and (+)-12-deoxybionectin A (11).
Scheme 2
Scheme 2
First-generation total synthesis of (+)-gliocladin B (1). Reagents and conditions: (a) Br2, CH2Cl2, 0 °C (75%); (b) AgBF4, DTBMP, EtNO2, 0 °C (83%, 5g-scale); (c) H2, Pd/C, NEt3, MeOH, EtOAc, 23 °C; Et3N•3HF, 23 °C (100%); (d) n-Bu4NMnO4, CH2Cl2, 23 °C (41%); (e) H2S, TFA–CH2Cl2 (1:9 v/v), 0 °C; i-PrCOCl, pyr, CH2Cl2, 0→23 °C (82%, 2-steps); (f) hν (350 nm), 1,4-dimethoxynaphthalene, ascorbic acid, sodium ascorbate, H2O, MeCN, 25 °C (57%); (g) N2H4, THF, 0 °C; Ph3CSCl, NEt3, THF, 0 °C (81%, 2-steps); (h) Hf(OTf)4, MeCN, 23 °C (80%); (i) NaBH4, MeI, pyr, MeOH, 23 °C (80%); DTBMP = 2,6-di-tert-butyl-4-methylpyridine, TFA = trifluoroacetic acid, i-PrCOCl = isobutyryl chloride, pyr = pyridine.
Scheme 3
Scheme 3
Second-generation total synthesis of (+)-gliocladin B (1). Reagents and conditions: (a) MeSNa, TFA–MeNO2 (1:1 v/v), 0→23 °C (77%); (b) hν (350 nm), 1,4-dimethoxynaphthalene, ascorbic acid, sodium ascorbate, H2O, MeCN, 25 °C (88%).
Scheme 4
Scheme 4
Total synthesis of (+)-gliocladin C (4). Reagents and conditions: (a) TIPSCl, DMAP, CH2Cl2, 23 °C (95%); (b) hν (350 nm), 1,4-dimethoxynaphthalene, ascorbic acid, sodium ascorbate, H2O, MeCN, 25 °C (92%); (c) TFAA, DTBMP, MeCN, 23 °C (88%); (d) (HF)•pyr, THF, 23 °C; (e) IBX, DMSO, 23 °C; (f) AcOH, H2O, acetone, 23 °C (54%, 3-steps); TIPSCl = triisopropylsilyl chloride, DMAP = 4-(dime-thylamino)pyridine, TFAA = trifluoroacetic anhydride, IBX = o-iodoxybenzoic acid.

Similar articles

Cited by

References

    1. For reviews on cyclotryptophan and cyclotryptamine alkaloids, see: Anthoni U, Christophersen C, Nielsen PH. ch. 2. In: Pelletier SW, editor. Alkaloids: Chemical and Biological Perspectives. Vol. 13. Pergamon Press; London: 1999. pp. 163–236.; Hino T, Nakagawa M. ch. 1. In: Brossi A, editor. The Alkaloids: Chemistry and Pharmacology. Vol. 34. Academic Press; New York: 1989. pp. 1–75.

    1. For reviews on epipolythiodiketopiperazines, see: Waring P, Eichner RD, Müllbacher A. Med. Res. Rev. 1988;8:499.; Waring P, Beaver J. Gen. Pharmac. 1996;27:1311.; Gardiner DM, Waring P, Howlett BJ. Microbiology. 2005;151:1021.; Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM, Nierman WC, Howlett BJ. BMC Evol. Biol. 2007;7:174.; Huang R, Zhou X, Xu T, Yang X, Liu Y. Chem. Biodiv. 2010;7:2809.; Iwasa E, Hamashima Y, Sodeoka M. Isr. J. Chem. 2011;51:420.

    1. For reviews about pharmacologically active sulfur-containing compounds, see: Řezanka T, Sobotka M, Spížek J, Sigler K. Anti-Infect. Agents Med. Chem. 2006;5:187.; Jiang C-S, Müller WEG, Schröder HC, Guo Y-W. Chem. Rev. 2012 DOI: 10.1021/cr200173z.

    1. For the mechanism of toxicity, see: Chai CLL, Waring P. Redox Rep. 2000;5:257.; Bernardo PH, Chai CLL, Deeble GJ, Liu X-M, Waring P. Bioorg. Med. Chem. Lett. 2001;11:483.; Block KM, Wang H, Szabó LZ, Polaske NW, Henchey LK, Dubey R, Kushal S, László CF, Makhoul J, Song Z, Meuillet EJ, Olenyuk BZ. J. Am. Chem. Soc. 2009;131:18078.; Cook KM, Hilton ST, Mecinović J, Motherwell WB, Figg WD, Schofield CJ. J. Biol. Chem. 2009;284:26831.

    1. For approaches to epidithiodiketopiperazines, see: Trown PW. Biochem. Biophys. Res. Commun. 1968;33:402.; Hino T, Sato T. Tetrahedron Lett. 1971;12:3127.; Poisel H, Schmidt U. Chem. Ber. 1971;104:1714.; Poisel H, Schmidt U. Chem. Ber. 1972;105:625.; Öhler E, Tataruch F, Schmidt U. Chem. Ber. 1973;106:396.; Öhler E, Schmidt U. Chem. Ber. 1975;108:2907.; Ottenheijm HCJ, Herscheid JDM, Kerkhoff GPC, Spande TF. J. Org. Chem. 1976;41:3433.; Coffen DL, Katonak DA, Nelson NR, Sancilio FD. J. Org. Chem. 1977;42:948.; Herscheid JDM, Nivard RJF, Tijhus MW, Ottenheijm HCJ. J. Org. Chem. 1980;45:1885.; Kirby GW, Robins DJ, Stark WM. J. Chem. Soc., Chem. Commun. 1983:812.; Williams RM, Armstrong RW, Maruyama LK, Dung J-S, Anderson OP. J. Am. Chem. Soc. 1985;107:3246.; Aliev AE, Hilton ST, Motherwell WB, Selwood DL. Tetrahedron Lett. 2006;47:2387.; Polaske NW, Dubey R, Nichol GS, Olenyuk B. Tetrahedron: Asym. 2009;20:2742.; Overman LE, Sato T. Org. Lett. 2007;9:5267.; Ruff BM, Zhong S, Nieger M, Bräse S. Org. Biomol. Chem. 2012;10:935.; Nicolaou KC, Giguère D, Totokotsopoulos S, Sun Y-P. Angew. Chem., Int. Ed. 2012;51:728.