Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov;24(11):2994-3024.
doi: 10.1162/NECO_a_00344. Epub 2012 Jul 30.

Incremental slow feature analysis: adaptive low-complexity slow feature updating from high-dimensional input streams

Affiliations

Incremental slow feature analysis: adaptive low-complexity slow feature updating from high-dimensional input streams

Varun Raj Kompella et al. Neural Comput. 2012 Nov.

Abstract

We introduce here an incremental version of slow feature analysis (IncSFA), combining candid covariance-free incremental principal components analysis (CCIPCA) and covariance-free incremental minor components analysis (CIMCA). IncSFA's feature updating complexity is linear with respect to the input dimensionality, while batch SFA's (BSFA) updating complexity is cubic. IncSFA does not need to store, or even compute, any covariance matrices. The drawback to IncSFA is data efficiency: it does not use each data point as effectively as BSFA. But IncSFA allows SFA to be tractably applied, with just a few parameters, directly on high-dimensional input streams (e.g., visual input of an autonomous agent), while BSFA has to resort to hierarchical receptive-field-based architectures when the input dimension is too high. Further, IncSFA's updates have simple Hebbian and anti-Hebbian forms, extending the biological plausibility of SFA. Experimental results show IncSFA learns the same set of features as BSFA and can handle a few cases where BSFA fails.

PubMed Disclaimer

Publication types

LinkOut - more resources