Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 21;84(16):7124-30.
doi: 10.1021/ac3014498. Epub 2012 Aug 10.

Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies

Affiliations

Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies

Matthew F Bush et al. Anal Chem. .

Abstract

One difficulty in using ion mobility (IM) mass spectrometry (MS) to improve the specificity of peptide ion assignments is that IM separations are performed using a range of pressures, gas compositions, temperatures, and modes of separation, which makes it challenging to rapidly extract accurate shape parameters. We report collision cross section values (Ω) in both He and N(2) gases for 113 peptide ions determined directly from drift times measured in a low-pressure, ambient temperature drift cell with radio-frequency (rf) ion confinement. These peptide ions have masses ranging from 231 to 2969 Da, Ω(He) of 89-616 Å(2), and Ω(N(2)) of 151-801 Å(2); thus, they are ideal for calibrating results from proteomics experiments. These results were used to quantify the errors associated with traveling-wave Ω measurements of peptide ions and the errors concomitant with using drift times measured in N(2) gas to estimate Ω(He). More broadly, these results enable the rapid and accurate determination of calibrated Ω for peptide ions, which could be used as an additional parameter to increase the specificity of assignments in proteomics experiments.

PubMed Disclaimer

LinkOut - more resources