Chromosome evolution in Eulipotyphla
- PMID: 22846716
- DOI: 10.1159/000339889
Chromosome evolution in Eulipotyphla
Abstract
We integrated chromosome painting information on 5 core-insectivora species available in the literature with new Zoo-FISH data for Iberian shrew (Sorex granarius) and Altai mole (Talpa altaica). Our analysis of these 7 species allowed us to determine the chromosomal features of Eulipotyphla genomes and to update the previously proposed ancestral karyotype for 2 main groups of the Sorex genus. The chromosome painting evidence with human painting probes (HSA) reveals the presence of the 2 unique associations HSA4/5 and 1/10p/12/22b, which support Eulipotyphla. There are a series of synapomorphies both for Erinaceidae (HSA3/1/5, 3/17, 11/15 and 10/20) and for Soricinae (HSA5/9, 6/7/16, 8/3/21 and 11/12/22). We found associations that link Talpidae/Erinaceidae (HSA7/8, 1/5 and 1/19p), Talpidae/Soricidae (HSA1/8/4) and Erinaceidae/Soricidae (HSA4/20 and 2/13). Genome conservation in Eulipotyphla was estimated on the basis of the number of evolutionary breaks in the ancestral mammalian chromosomes. In total, 7 chromosomes of the boreo-eutherian ancestor (BEA8 or 10, 9, 17, 18, 20-22) were retained in all eulipotyphlans studied; among them moles show the highest level of chromosome conservation. The integration of sequence data into the chromosome painting information allowed us to further examine the chromosomal syntenies within a phylogenetic perspective. Based on our analysis we offer the most parsimonious reconstruction of phylogenetic relationships in Eulipotyphla. The cytogenetic reconstructions based on these data do not conflict with molecular phylogenies supporting basal position of Talpidae in the order.
Copyright © 2012 S. Karger AG, Basel.
Similar articles
-
Zoo-FISH in the European mole (Talpa europaea) detects all ancestral Boreo-Eutherian human homologous chromosome associations.Cytogenet Genome Res. 2006;115(2):154-7. doi: 10.1159/000095236. Cytogenet Genome Res. 2006. PMID: 17065797
-
Karyotype evolution of eulipotyphla (insectivora): the genome homology of seven sorex species revealed by comparative chromosome painting and banding data.Cytogenet Genome Res. 2011;135(1):51-64. doi: 10.1159/000330577. Epub 2011 Sep 12. Cytogenet Genome Res. 2011. PMID: 21912114
-
Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora.Chromosome Res. 2006;14(2):151-9. doi: 10.1007/s10577-006-1032-y. Epub 2006 Mar 17. Chromosome Res. 2006. PMID: 16544189
-
Origins of primate chromosomes - as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences.Cytogenet Genome Res. 2005;108(1-3):122-38. doi: 10.1159/000080810. Cytogenet Genome Res. 2005. PMID: 15545724 Review.
-
Chromosome evolution in Perissodactyla.Cytogenet Genome Res. 2012;137(2-4):208-17. doi: 10.1159/000339900. Epub 2012 Jul 18. Cytogenet Genome Res. 2012. PMID: 22813844 Review.
Cited by
-
Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae.Genes (Basel). 2022 Dec 31;14(1):117. doi: 10.3390/genes14010117. Genes (Basel). 2022. PMID: 36672858 Free PMC article.
-
Chromosomal Evolution of the Talpinae.Genes (Basel). 2023 Jul 19;14(7):1472. doi: 10.3390/genes14071472. Genes (Basel). 2023. PMID: 37510376 Free PMC article.
-
Chromosomal evolution among leaf-nosed nectarivorous bats--evidence from cross-species chromosome painting (Phyllostomidae, Chiroptera).BMC Evol Biol. 2013 Dec 26;13:276. doi: 10.1186/1471-2148-13-276. BMC Evol Biol. 2013. PMID: 24369737 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources