Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 1;5(1):13.
doi: 10.1186/1755-1536-5-13.

Diabetic angiopathy and angiogenic defects

Affiliations

Diabetic angiopathy and angiogenic defects

Ling Xu et al. Fibrogenesis Tissue Repair. .

Abstract

Diabetes is one of the most serious health problems in the world. A major complication of diabetes is blood vessel disease, termed angiopathy, which is characterized by abnormal angiogenesis. In this review, we focus on angiogenesis abnormalities in diabetic complications and discuss its benefits and drawbacks as a therapeutic target for diabetic vascular complications. Additionally, we discuss glucose metabolism defects that are associated with abnormal angiogenesis in atypical diabetic complications such as cancer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic image of angiogenesis switch. Angiogenesis results from the balanced functions of pro-angiogenic and anti-angiogenic molecules. Defects in the angiogenic balance lead to a shift toward either excessive angiogenesis or anti-angiogenesis. CSF, colony-stimulating factor; EGF, epidermal growth factor; FGF, fibroblast growth factor; FLT1, fms-related tyrosine kinase 1; HGF, hepatocyte growth factor; IGF, insulin-like growth factor; MMP, matrixmetalloproteinases, PDGF, platelet-derived growth factor; PECAM-1, platelet endothelial cell adhesion molecular (also known as CD31); PEDF, pigment epithelium-derived factor; TGFβ, transforming growth factor-β; TIMP, tissue inhibitor of metalloproteinases; TNFa, tumor necrosis factor-α; VE, vascular endothelial; VEGF, vascular endothelial growth factor.
Figure 2
Figure 2
sFllt1 plays as endogenous inhibitor of VEGF signaling by trapping free-VEGF. VEGF signaling is strictly regulated by endogenous molecules, including sFlt1. sFlt1 binds to and sequesters VEGF from cell-surface VEGF receptors, subsequently VEGF modulated pro-angiogenesis signal is inhibited.
Figure 3
Figure 3
The biology of angiogenesis abnormality in diabetic organ dysfunction. In diabetes, the angiogenesis signal is regulated in an organ-, tissue-, and cell type-specific manner. In the retina, atherosclerotic plaque, kidney glomerulus, and cancer, VEGF likely plays pro-angiogenic roles; on the contrary, in diabetic heart, kidney tubule, peripheral vessels, and placenta, VEGF signal is inhibited.

Similar articles

Cited by

References

    1. Kopelman P. Health risks associated with overweight and obesity. Obes Rev. 2007;Suppl 1:13–17. - PubMed
    1. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986. - PubMed
    1. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) Lancet. 1998;352:854–865. - PubMed
    1. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–117. doi: 10.1016/0168-8227(95)01064-K. - DOI - PubMed
    1. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, Cuddihy R, Cushman WC, Genuth S, Grimm RH Jr, Hamilton BP, Hoogwerf B, Karl D, Katz L, Krikorian A, O’Connor P, Pop-Busui R, Schubart U, Simmons D, Taylor H, Thomas A, Weiss D, Hramiak I. for the ACCORD trial group. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–430. doi: 10.1016/S0140-6736(10)60576-4. - DOI - PMC - PubMed

LinkOut - more resources